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PREFACE

This report is the result of research based on the premise that
image processing systems can be made more effective if relevant
characteristics of the human visual system (HVS) are an integral part
of their design. Few would take issue with this general statement;
however, prior image processing work has concentrated on the devel-
1 opment algorithms and hardware. Few image processing researchers
ii have had the time or inclination to study the physiology or psychophys-
ical characteristics of the HVS. On the other hand, the physiologist
is seldom interested in the practical applications of his work with
respect tc image processing. The difficulty becomes readily apparent
when one attempts to find an applicable journal to read. There is no
journal (to my knowledge) which spans all of the fields associated with
image processing. This is not an atypical situation when one is inter-

ested in a multidisciplinary field such as image processing. Because of

this problem I have tried to include a layman's guide to the HVS with
appropriate references in the Appendices. The interested reader is
encouraged to read the Appendices first.,

I would also like to point out that the models developed and analyzed
in this report are by no means limited to bandwidth compression appli-
cations. The experimental applications were limited to this area because

of current interests and time limitations.

Unfortunately, time limitations also lead to compromises, particu-
larly in such an exciting field which offers so many research paths.
Section VIII is an example. I consider the issue of image quality mea-
sures of paramount importance. However, the work that had to be

iii
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accomplished leading up to this topic did not leave enough time for
experimental work on this subject. The lengthy paradigms required
for valid psychovisual results contributed to the problem. As a result,
Section VIII presents what I consider to be preliminary results. These
comments are not meant to cast doubt on the results reported in Section
VI but rather to encourage the reader to put them in their proper
context.

I am indebted to many for their assistance and encouragement. My
original interests in the human visual system was kindled by Professor
Matthew Kabrisky at the Air Force Institute of Technology. Many of the
achromatic model considerations came out of discussions with Professor
E.L. Hall. Dr. Werner Frei provided many fruitful discussions on the
chromatic model. I would also like to thank Professor Lloyd Welch for
""reminding'’ me that characteristic functions are more than a figment
of a mathematicians imagination. Indeed, his help in this area led
directly to the power spectrum equations which are of fundamental im-
portance to the bandwidth compression applications discussed in Sections
VI and VII. Most importantly, I wish to acknowledge the guidance and
assistance of Professor Harry C. Andrews throughout the past two years.
I am still amazed that he accepted the challenge of our association and
hope that it has been as rewarding for him as it has for me.

The true test of most image processing research is in the viewing.
To the extent that this work may appear successful, I am indebted to
Mr. Ray Schmidt and the rest of the Image Processing Laboratory staff:
Gary Edwards, John Horner, Toyone Mayeda, David Nagai, Clay Olmstead,

Patrick Stoliker, and James Tertocha. The artwork was done by Doyle

iv




Howland. Ed Kasanjian and Dave Peck assisted in software development
and Marilyn Chan, Amy Yiu and Eileen Jurak provided administrative
and secretarial services. The final manuscript was typed by Lucy Cheung.

Finally, I want to thank the U.S. Air Force for providing me with the

opportunity to perform this work.
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SECTION I
INTRODUCTION

This dissertation is concerned with the processing of discrete,
sampled imagery, in particular, the coding and bandwidth compres-
sion of such data. The major thesis of this work is that the human
visual system (HVS) has certain characteristics which, when quan-
tified, can be used to formulate mathematical models suitable for
analyzing and processing digital imagery. These models should
lead to a fidelity criterion for visual data which matches human
subjective evaluation of images. In addition, more efficient coding
and bandwidth compression techniques should evolve from such

models.

l1.1. Research Objectives

The primary goal of this research in the above context is to
quantify these models and verify their utility in coding and band-
width compression systems. The emphasis here is on the word
quantify. Several researchers have recognized the importance. of
the characteristics of the HVS in implementing and evaluating image
processing systems [1] thru [15]. This recognition is often limited

to an acknowledgement of the importance of one or two specific

=

———




H
#

rw'".'—r'—_'—'——————-”’

facets of the HVS accompanied by a heuristic argument supporting
the implementation of a particular image processing technique.
This type of approach (which could be called a top down approach)
assumes one knows a priori which characteristics of the HVS are
relevant to the task at hand. Unfortunately, the HVS is a complex
i nonlinear system with interrelated traits. As shown in nj, a
simplifying assumption with regard to the nonlinearity alters the
characteristics of the system and fails to reveal important contrast
properties, To take advantage of the entire system it is more
reasonable to study or model the HVS with a bottom up approach.
After analyzing the effects of the entire system, the model may be

reduced to one appropriate for a specific task. This latter

approach will be used during the present investigation.

1. 2s Organization of the Dissertation

In the next section we will develop a model for the human
visual system. First a biological model based on physiological

and psychophysical properties of the HVS is presented. A

e < e T S o o MEATAES, |

mathematical homologue -- which can be readily analyzed — will
then be used to quantify the biological model.
In Section IIl the characterization of visual images will be |

presented. The statistical properties will be developed in con-

sonance with the model generated in Section Il. The spectral (or




color) content of images will be discussed in detail with particular
emphasis on color coordinate conversions,

Section IV contains a brief survey of bandwidth compression
and image coding, including so called psychovisual coders. The
emphasis will be on rate distortion theory and its application to
transform coding. The basic assumptions which are necessary to
find a solution to the set of parametric equations, which are the
heart of rate distortion theory, are presented and discussed.

The results of Sections II thru IVare combined with some
experimental results in Section V, It is shown that the mathemati-
cal models derived in Section II are consistent with the measured
statistical characteristics of images. Furthermore, when a statis-
tical analysis of the model is carried out, with a standard image
representation as an input, the output of the complete HVS model
is statistically compatible with the assumptions of rate distortion
theory. This latter point cannot be overemphasized. Several
assumptions are made to obtain solutions to the rate distortion
theory equations which are seldom met for ''raw'' images. Images
which are preprocessed by the HVS model satisfy all of these as-
sumptions except that of stationarity.

Section V  is followed by two sections which contain the results
of several coding experiments., The achromatic (black and white)

experiments are reported in Section Vland the color results are




contained in Section VII.

In Section VII a new image quality measure is presented. This
measure evolved from the HVS model and is a ''subjective'' mean
square error fidelity criterion. The applicability of this criterion
to rate distortion theory and image evaluation will be discussed and
some experimental results indicating the utility of this measure are
presented,

Finally, Section IX contains a review of the major findings of
this research and a discussion of possible applications. Several

areas for continued research are pointed out.
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SECTION II

HUMAN VISUAL SYSTEM MODELS

In the past two or three decades visual system modeling has
come into vogue. There are several reasons for this, not the least
of which is the recent availability of large amounts of physiological
and psychophysical data. Technological advances, in both labora-
tory instrumentation and communication of the spoken and written
word, are prime factors in this "information explosion'' no doubt.
Indeed, the vast amount of information presently available has taxed
the imaginations of the ''model builders' in some cases. However,
the literature is replete with models of the HVS and just like the
proverbial bus, wait a while, the one you want will come along.

Another reason for this age of modeling is the advent of com-
puterized image processing and analysis. Prior to this time vision
modeling was done primarily to explain and understand the inter-
workings of the system with little practical application. The biolo-
gical models which are being conjectured today are quite often
quantified and transformed into mathematical models which become
integrated parts of complex software and/or hardware systems (in
our case, bandwidth compression and coding systems). We will

now formalize our biological model.




2.1. Biological Mcdel

We begin by indicating all of the areas which our model will
not cover including any assumptions which will be made in devel-
oping the model. The model is for processing single frame color
imagery, therefore temporal aspects will not be considered. In
addition, we will assume the images will be viewed with an illumi-
nant of 5500°K at intensity levels which assure photopic (cones only)
vision. The viewing distance to image size ratio will be such that
we subtend a 2° field and hence, we are considering foveal vision
only. Furthermore, no consideration will be given to stereoscopic,
depth, or disparity effects. In short, our model will assume mo-
nocular, color, single-frame, photopic, foveal vision. In addition,
we will assume the ocular media and the retinal mosaic to be spa-
tially isotropic and homogeneous (which is a reasonable assumption

for the fovea [16 , pp. 47-50]).* The biological model which follows

* Perhaps a comment on the isotropic assumption is in order.

As pointed out in Section B.3, the sensitivity of the visual system
to contrast gratings varies with angular orientation of the gratings.
The response to vertical and horizontal gratings 1s the same, but
sensitivity decreases for rotations less than 90 degrees. The mini-
mum sensitivity occurs at 45 degrees rotation and at this point the
response of the system to a 30 cycles/degree grating is 3dB below
that at zero degrees rotation, The decrease in sensitivity is less
for spatial frequencies below 30 cycles/degree. Thus, the describing
function variation with rotation is minimal. One may question this
conclusion since we obviously do not ''see' as well upside down as
we do upside right. The difference is that ''seeing' involves cogni-
tion and the higher level mechanisms which are the precursors of
cognition are not rotationally invariant., Since we are modeling only
the preprocessor functions, the isotropic assumption is reasonable.

6




from these assumptions is shown in block diagram form in
Figure 1.

The ocular media is represented by a single block since we
are assuming spectral and spatial invariance within the media.
This is a valid assumption for small off axis displacements (which
is the case for foveal vision). The major problem with this as-
sumption is that the chromatic aberration in the blue region is
significant. Since the system is essentially linear at this point we
have chosen to include the resultant loss of resolution in this spec-
tral region with that due to blue cone spacing in the next stage.

The ocular media block is followed by three blocks represen-
ting the three types of cones. Since we are modeling photopic
foveal vision no consideration is given to the rod system. Each
photoreceptor block represents a spectral and spatial function.

The spectral functions are due to the pigments of the cones. The
low-pass spatial effects are a result of the cone size and spacing
(the retinal mosaic dimensions), After the photopigment of a cone
absorbs light several chemical changes occur which eventually lead
to electrical spike activity in the ganglion axons. At this point the
neuronal signals are a nonlinear function of the visual stimulus.
The actual site at which the nonlinearity occurs in the human retina
is not known; however, there is evidence that it is after the recep-

tors and prior to the ganglion cells (17, p. 251]. Jameson has
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argued that if the receptors are linear and linear summations occur
before the nonlinearity, then the trichromatic and opponent color
theories of vision are compatible [18, pp. 391-397]. Indeed, phy-
siological recordings from the retinas of several species indicate
the horizontal cells may be the site of spectral summation which
produces the luminance signal and the chromaticity signals are
generated in the outer plexiform layer (19, pp. 199-200]. In addi-
tion, recordings from the inner nuclear layer indicate a nonlinear
transformation has occured. The biological model of the retina is
completed by the neural interaction (NI) blocks which represent the
rich interconnectivity within the retina.

The ganglion cell axons form the optic nerve which carries
the output signals of the retina to the lateral geniculate bodies
(LGB). The processing which occurs at this point is still a matter
of debate (see Section A.3). Neurological recordings in primates
have revealed a response organization at this level. The LGB
blocks in Figure 1 represent this organization with four opponent
cell and two non-opponent cell structures.

From the lateral geniculates the three pairs of outputs go
directly to the visual cortex, in particular, area 17 of the striate
cortex. This last block in the diagram represents the simple and
complex cells which have been investigated primarily by Hubel and

Wiesel (see Section A.4)., The cells are located in area 17 and 18




of the cortex. The characteristics of these cells suggest higher
cortical processes are involved and at this point the transition
between the ''preprocessor elements' and the functional processing
which includes cognition and perception becomes prominent. Given
the biological model of Figure 1 we will now develop a concise

mathematical model,

2.2, Mathematical Model

The mathematical homologue of Figure 1 is shown in Figure

2. The ocular media is represented by an ideal low-pass filter

which is invariant over the spectral range of the input signal,
f(r,8,X). Furthermore, the system is assumed isotropic, therefore

the line spread function (LSF) is rotationally invariant. The LSF

SRS ——

for a 3mm pupil has been shown to be approximately exp(-.7r) =
g [20]). This formulation also compares favorably with the data of
Campbell and Gubisch (see Section B.1).

The spectral sensitivities of the three cones can be quantified
by the curves shown in Figure B.8. Note that these curves include

the effects of the ocular media which is consistent with the struc-

ture of our model. The spatial characteristics of the red and green
channels at this point have been shown to be effectively that of the
ocular media, hence, they require no further modification. The

blue channel however, has been shown to have a contrast sensitivity

10
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which peaks at only 2 cycles/degree (see Section B.7). The in-

creased high frequency loss of the blue channel is due to the scar- *
city of blue cones and can be represented by an ideal low-pass
filter with a cutoff frequency of 2 cycles/degree and a slope of
-6dB/octave.
The first set of neural interconnections and the nonlinearity
of Figure 1  are due to the linear spectral summations as pro- !

posed by Jameson [18, p. 392] and are of the form

X
Wy & fl[zx(au“x ta,B tay)]

*
vV, = fz[zx‘azlax - 3,8 ¢+ azsyx’]
%
hi T fs[zx"au“x +ay8 + agy] (1)

The nonlinear functions fl’ fZ' and f3 will be assumed logarithmic.

The o.)\, BX. and Y)\ correspond to the blue, green, and red cone

S

spectral sensitivities. The linear portion of equation (1) may

be written in matrix form

¥4 T %2 N4 -
Ll 31 "3 3,3 B\
¥3 “%31 %32 %33 Y\ (2)

This formulation is similar to the first stage of Frei's color model

[21 , p. 116] and it satisfies Grassmann's laws of color mixture

12
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[ 22, p. 233]. In addition, Vl is interpreted as luminance like, v,
is redness for positive values and greenness for negative ones, and
V3 is yellowness-blueness. Since Vl is luminance this formulation
satisfies Abney's law of luminance addition [ 23, p. 370]. The
weighting factors, aij' are dependent upon the set of functions
chosen to represent the cone distributions. If the Konig distribu-

tions are used for the receptor sensitivities, then equation (2)

becomes [18,p, 395]

V1 0.0 .15 .85 ay

V2 = .37 -2.23 1.66 sx

vV, -.71 .06 .34 Yy (3)
Equation (3) is represented by T in the mathematical model of
Figure 2.

The last block of the retina model shown in Figure 1 repre-
sents spectral and spatial characteristics. The spectral portion
accounts for the opponent color traits of the system. Cornsweet
has shown that a logarithmic difference operation can produce chro-
matic signals which are compatible with human hue perception [17,
p. 248]. In particular, hue perception is relatively invariant to
intensity changes. This operation is performed by the linear adders
as shown in Figure 2, Multiplicative constants have been intro-

duced at this point to adjust the color balance so that an incremental

13




change in the chrominance signals results in an equivalent hue shift.
The last block in the mathematical model is the high-pass

filters which provide the low-frequency roll-off of the HVS contrast

sensitivity curves. These filters have been shown to be of the

form (1, p. 166]

10'4+ wz

4 x 1o‘3 + .s«nz

H(w) =

The actual location of the differencing points and the filters has not
been established. Indeed, as noted in Section B.7, the presence of
the high-pass filters in the chrominance channels is still being de-
bated. The configuration for the luminance channel is well esta-
blished however, and the last filtering operation probably occurs at
the retina level. The signal £ is fed to the LGB. In the case of
<, and <5 (if the filtering takes place), there is evidence that the
filtering is under the control of more central mechanisms (cortical
control). These filters may actually be located in the striate
cortex. The inputs to chrominance filters may be derived in the
LLGB's, since there is some indication the differencing networks
are located there [24]. In any case, the sequence as shown is
probably correct.

The mathematical model as shown in Figure 2 appears to

fall short of the model in Figure l. Figure 2 shows only

14
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three output variables, luminance and two chrominances. This is
not a defect since the complements of these signals can be derived
quite easily. Of more concern might be the nonexistence of the
simple cell and complex cell behavior exhibited in the cortical area.
These effects have not been included since they are, again, consi-
dered to be under higher order control. Therefore, they do not fit
the preprocessor definition of our model. Indeed, there is much

evidence indicating the responses at this level are modified by

heredity, environment, cultural background, and conscious effort on
the part of the viewer [25].
We would like to add however, that the eventual use of £, cl,

and <, will be in the spatial frequency domain, i.e., we will work

and c.. 1

with the two-dimensional Fourier transforms of £, <) 2

Some authors have argued that the cortical areas of the visual sys-
tem are performing such a transformation (see Section A.4). In
fact, the simple and complex cell behavior can be e.-lained using
such a theory. As a result, several '"Fourier Models'" of vision
have appeared in the past 10 years. Unfortunately, matters are not
so simple as to validate completely such a simplistic viewpoint.
Although the Fourier Models explain many nonintuitive visual pheno-
mena and are consistent with a wealth of psychovisual data, they
are considered to be '"an outlandish notion" by some authors [ 26,

pp. 210-214]. For other reasons, which will become apparent later,
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we will use the Fourier transform domain; and, because it appears
to be the domain of the brain in many respects, we shall refer to

the Fourier transforms of £, e and c, as the ''perceptual space,"




SECTION III

CHARACTERIZATION OF IMAGERY

In this section we will present a mathematical characteri-
zation of images which will be used throughout this dissertation.
The basic ground work in image sampling, spatial and spectral
decompositions and transformations, and statistical analysis will

be developed. We will begin with the continuous image.

3.1. Continuous Representation

Let J(x,y,t,\) be the intensity of an image source defined
at spatial coordinates (x,y), at time t, and of wavelength \.
4 (x,y,t,\) is a real and positive function. For the ''still-image"
case, the intensity is time invariant and we may write J(x,y, \).
The spectral dependence of the image may be eliminated by

integrating the product of J(x,y,\) and a luminous efficiency

function. Thus, for the achromatic case

Jxy) =[xy 0 V00 dr (5)
0
|
where Vt()\) is the achromatic spectral response of the human

visual system.
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The color representation of an image is usually accomplished
by a set of tristimulus values. The luminous efficiency function
in this case is defined over three overlapping spectral regions.

The three image representations are defined by

R(x,y) =f.¢(x,y.x) A%
0

e(“ dx (6)

sx,y) = [ Sy, 0 v, 0 dr (™
0

®
8ixy) = [ oy, 0 V() ax (8)
0
In this particular tristimulus space, which is commonly referred
to as the RGB-space, the peak responses of VP(X), VJ()\), and
VB(M fall at 600nm, 530nm and 440nm, respectively (see Figure
3). Thus, the red luminousity function peaks between pure green
(530nm) and pure red (650nm), in the yellow region. The green
function peaks at mid-green and the blue function peaks in the
violet region. The label RGB-space can be misleading if one is
not cognizant of the true spectral characteristics of the defining
curves,
There are several color coordinate systems currently in use
in image processing [ 27, Chapter 3], Each of these systems can

be defined by a set of luminosity functions, as in the RGB case, or
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by coordinate conversion functions which convert the RGB luminosity
functions to the desired space. We will discuss several of these
coordinate systems and conversion to and from them in more

detail later.

3.2. Discrete Representation

In the previous section the continuous image representation
was defined as J(x,y,t,\). In this representation x and y are
defined over all space, i.e., x and y range from -» to +®. [n
addition, time and wavelength also have this infinite range. The
first step to be taken in discretizing our representation is to limit
these bounds. Since the primary concern in this dissertation is
"still" or '"'single frame' imagery we will eliminate the time
dependence completely. The wavelength range can be reduced to
that range of the spectrum over which the visual system responds.
For now, we will simply limit the spatial range by confining x and
y to the range -L to L.

Since we will be processing the images with a digital com-
puter, they must be limited to an array of discrete values. This
is accomplished by sampling the continuous intensity over the
limited ranges we have defined. These sampled values are then
quantized with a number of levels compatible with the accuracy

desired and digital word size available. For the imagery used in

20




the experimental work of this research 256 level quantization was used. 1

In addition, all images were sampled over a 512x 512 linear grid.

Where 256 x 256 size images are specified in this dissertation, said

S

images were obtained by averaging a 512x 512 picture with a 2x 2 pic-
: ture element (pixel) square. We will represent discretized imagery by

a two-dimensional matrix denoted by a bracketed letter, hence

fl,l fl,Z v fl,N
f
2,1
(f] = (9)
i v NN

is an Nx N discretized image.

3.3. Spatial Decomposition of Discrete Images

Assume the discrete representation of an image as defined

by equation (9). We may write a separable linear trans-
i formation on the image as
E t
"" [F] = [a] [£][v] (10)

where [F] is called the unitary transform domain of the image,
[u] and [v] are unitary operators, and the superscript t denotes
matrix transposition [ 28, p. 30]. If [u] and [v] are unitary, then !

by definition !
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and

-1 *. t
(v ] (11)

(v

where * denotes complex conjugation. For the case of a real

unitary matrix [u],
-1 t
[u] * = [u] (12)

and [u] is called an orthogonal matrix, The inverse of equation

(10) becomes
[£] = [u] [F] [v]' (13)

Equation (10) is-”"commonly referred to as an orthogonal de-
composition of [f]. Since the decomposition is over the two-
dimensional spatial representation of the image in this case, it
may also be referred to as a spatial transformation. Such trans-
formations are useful for image representation to the extent that
they ''average' the energy or information contained ir the original
representation into a more ''compact'' space. Hence, certain
elements of the transformed space may be set to zero with a
minimal loss of information, This attribute of orthogonal trans-
formations is useful in bandwidth compression and coding appli-

cations. There are an infinite number of possible orthogonal
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systems; however, only a few have been formally defined and used
in image processing. The most commonly used transforms are:
Fourier, Haar, Hadamard/Walsh, Slant, Cosine, Sine, and
Karhunen-Loeve [ 27, Chapter 10], [28, pp. 33-38)], and [ 29,

Chapter 6].

The optimum statistical transform for minimizing the mean
square error criterion between the original and a reconstructed
image (formed with a reduced number of transform coefficients) is
the Karhunen-Loeve transform (KLT) [ 29, p. 123]. This transform
is composed of eigenvectors of the correlation matrix of the original
image, or class of images. There are two problems associated
with this transform. The first problem is the large number of
computations which must be performed to: (1) determine a corre-
lation matrix, (2) diagonalize it to obtain eigenvectors, and (3)
perform the actual transformation, The second problem is that
mean square error is not necessarily a valid criterion for imagery.

The discrete Fourier transform (DFT) is defined as

[F] = [A] [£] [A] Lo

where
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where N is the number of samples in each direction and i=4-1

Note that [A] is symmetric and therefore equation (14) follows

directly from equation (10). Several features make the DFT
appealing. Firstly, the transform can be implemented with a fast
computational algorithm, the fast Fourier transform (FFT). The
FFT requires a number of computations proportional to ZNzlogZN
rather than ZN3 as for the Karhunen-Loeve transform (assuming

an NxN image) [ 30, p, 49]. A second favorable trait of the DFT
is that under the proper statistical assumptions, as N grows, the
DFT approaches the optimum decomposition [ibid]. Another some-

what mundane reason for representing images in this form is the

compatibility with linear systems analysis and the direct analogy

24

(15)

(16)

T e

i ——




between the time-frequency and space-spatial frequency domains.
A problem which is often cited for not using the DFT is that the
kernel -- defined by equation (16) - is complex.

The discrete cosine transform (DCT) obviates the complex

problem. This transform is defined on the reals only and is given

by

N-1
Gx(O) = %’ g x(n)

N-1
2 2n+1)k
G k) = = ¥ x(n) cos[-(-n—z-r\})—ﬂ-], k=120 LN
n=0

where Gx(k) is the kth DCT coefficient [31]), Ahmed has shown
the DCT is closer to the optimum (KLT) than the FFT for the
statistical assumptions of a first order Markov system with cor-
relation equal to .9 [ibid]. Jain has shown this to be true for
correlations greater than .5; however, for correlations less than

.5 other sinusoidal transforms perform better than the DCT [32],

3.4. Spectral Decomposition of Discrete Images

In Section 3.1 we briefly touched on the spectral decomposition
of continuous images. As pointed out then, several color-coordinate

systems may be defined. These ''rotations' of the color axes can
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produce various energy packing and/or decorrelation properties
which make one system more appropriate than another for a
specific task., For discrete images, conversion between linear

systems involves a single matrix multiplication

Co k k k CI

1 11 %2 ¥*4 1
co, . ka1 Ky K3 || CLL
co, ky) K3 kg3 || ©14

where CIi and COi are color input and color output tristimulus
values. Many conversion matrices are defined in terms of the
RGB functions shown in Figure 4. One such conversion which

has found wide applicability is the National Television Systems

Committee (NTSC) receiver primary color coordinate system.

H The three coordinates of this system are referred to as Y, I, and
: Q; hence, the system is sometimes called the YIQ system. The
r conversion is defined by

b 299 .587 .114 R

I = «596 -.273 -,322 G

Q 212 -,522 315 B

The Y signal represents luminance and the I and Q are chrominance

signals which are linear functions of R-Y and B-Y respectively.

As can be seen from Figure 4, the Commission Internationale
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de 1'Eclairage (CIE) standard observer curves have some negative
areas. Thus, some tristimulus values are negative which is a
nonrealizable situation. To eliminate this problem, the XYZ pri-
mary system was developed by the CIE. The color matching
functions of this system are shown in Figure 5. This set of

curves can be produced from those of Figure 4 by the conversion

X .607 .174 . 201 R
Y = .299 .587 .114 G (20)
zZ 0.0 .066 1,117 B

Note that Y in this system is equivalent to Y in.the NTSC YIQ
system.

In order to evaluate the effectiveness of a color coordinate
system, one may devise a color-order system which specifies all
object colors within the limited domain under consideration. There
are three general categories these systems may be grouped under:
additive color, subtractive color, and perceptual color. For
obvious reasons, we are concerned with the latter. One system
of this group has gained wide popularity among researchers, the
Munsell Color System [ 22, p. 476]. The Munsell Book of Color
contains color patches arranged in equal visual spacings of hue,
luminance, and saturation. This arrangement yields color solids

with loci of constant hue and saturation on a surface of constant
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Figure 6. CIE Standard Observer Chromaticity
Diagram with MacAdam Ellipses
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luminance. These loci form a polar coordinate system.,

Given that a Euclidean property of color perception is
approximately valid, a chromaticity scale based on this polar
coordinate system can be converted to a uniform scale. Analytic
expressions that transform the CIE standard observer tristimulus
values to three new variables which define a ''distorted" space can
then be defined. In this space the chromatic difference between
any two samples in an equi-luminance plane corresponds to the
same distance separation of their representation points. Thus, the
vector distance between two colors corresponds to their perceived
difference. With the Munsell system as a basis, a number of

attempts at acceptable -- but simple -- analytic transformations have

been made [22, p. 454]. The more recently developed cube-root
coordinate system [33] has received much attention because of its
simplicity and good approximation to the spacing provided by the
Munsell system.

The RGB system can be represented in a chromaticity
diagram as shown in Figure 6. The outer horseshoe shaped
curve, the chromaticity curve, is the locus of wavelength points for
the gamut of saturated hues in the system. Overlayed on this
curve is a set of MacAdam ellipses which represent the regions
within which chrominance can be varied without perceptible color

shifts, The actual size of these ellipses has been exaggerated.
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The important point is their size varies over the range of spectra
shown. The blue region, for example, is much more sensitive to
shifts than the green region. An ideal perceptual cclor-coordinate
system would map these areas into circles of equal radii.

The cube-root or Lab color coordinate system was developed
with this idea in mind [ 33]. In addition, the system is based on
simple conversion formulas, In terms of RGB, the system is

defined as

E= 25.29G1/3 - 18.38
a = 106.0(R1/3- Gl/3) (21
b = 42, 34((;1/3 . 31/3)

where R=1.02X, G=Y, and B=.847Z [ 33 ]. The set of equations

can be rewritten as

1/3
L=25<1oo-l-> T
Y
0
i 1/3 1/3
s = 107.72 (100 35—) g (100 l) (22)
X Y
¥ 0 0
[ 1/3 1/3
b = 43,08 (100 —Y—> g (100 £
Y z
1 0 0/

where Xo, YO’ and Z0 are the tristimulus values for the refererce

white. Several factors should be noticed. First of all, this
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system provides a set of coordinates in close agreement with the
Munsell system. The three coordinates L, a, and b correspond to
lightness, redness-greenness, and yellowness-blueness (just as our
color model requires). In addition, the formulation contains a
nonlinearity, and in particular, one which has been proposed as
the '"correct'" nonlinearity for the HVS [ 34, p. 15]. Thus, the
Lab space has strong physiological and psychophysical support.
Another color system which is based on the visual system is

the retinal cone color system 27). This system is 'based on
Yy Yy

functions for normal, deuteranopic and protanopic vision which were
developed by Judd [35]- The conversion is defined as 1
‘) 0.0 1.0 0.0 [ x]
‘ |
T2 = -.460 1.359 .10l Y
T3 L0.0 0.0 .o J| Z ]
o -r -
. 299 . 587 .114 R
= A2 T 175 G (23)
L0.0 . 066 1.117 1 B |

Note that T1 in this system is equivalent to Y in the XYZ and
YIQ systems and is luminance. 'I'2 and T3 can be seen to be
chrominance signals which are greenish and blueish respectively.

Frei has used this coordinate system in the development of a HVS

color model [36].
31




The Frei color system can basically be represented by the

set of equations

g = 21.54n Y
SIS zn["46x+ 1.359Y +.101z] (24)
2 Y
z
gy = 6. 27 Ln[Y]

The similarity between this system and the Lab system is readily
apparent. Furthermore, this set of equations is consistent with
the color model developed in SectionIl. Frei's complete model

also contains spatial filters in the last stage giving

N
= (25)
g, = 8, ® h,(x,y)

g, = 83 ® hy(x,y)

where denotes convolution. The filter functions used by Frei
were of the bandpass type 3],

One last system which is also based on a model of the HVS
will be discussed, that due to Faugeras [37]. Faugeras developed
a matrix based on the uniform color scale conversion of Stiles
[ 37 , p. 103]. This matrix defined a cone absorption stage in his

color model and it is given by
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F .363 .610 .026 R

1
FZ = .125 ,814 ,062 G (26)
F3 .001 .060 .939 B

The three signals A, S and <, which correspond to luminance,

red-green, and yellow-blue, respectively are then given by

A

13.83 l.nFl + 8.34 !.an+ .429 ln}E‘3

) 64 !.n[ ] (27)

[Fl]
10 4n | —
2 F3

This set of equations can be seen to be similar to those of the

0
1}
'=1| L)

[\V]

(]
"

Frei model, equation ( 24). The most important difference is
between A and 8- Recall that g, derives its luminosity character
from the linear equation which defines Y. In the case of A, the
constants multiplying each logarithmic function provide the correct

mixture for an approximation to luminance.

3.5. Some Statistical Characteristics of Discrete Images

The mean value of a discrete image is a matrix of the form

W] = E{(F]} = [E{F(x,y)}] (28)

where E{*] denotes the expected value operator. The correlation
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can be defined as

*
Rix,,y,:%,,y,) = E{F(x.,y,) F (x,,y,)} ( 29)
and similarly the convariance becomes

Clx,y,5%,,y,) = E{[F(x,y)) - E{F(x,y)}]

[F*(xZ'yz) g E{F*(le yZ)}]} ( 30)

If the image array, F, comes from a wide sense stationary pro-

cess, the correlation function is a function of k=x_ -x_ and £=

o2
Y=Y, thus
R(xl.Yl;XZ.YZ) =2 R(xl'xzt YI‘YZ) = R(k: L) (31)
and similarly for the covariance,
Clx;ry,3%,,¥,) = Clx -%,, y,-y,) = Clk, L) (32)

The two matrices will be of block Toepliz form under these

conditions [27]. When the correlation between the elements of

the array is separable in the x and y direction then the correlation

matrix can be expressed as a direct product of row and column

matrices, If we consider the special case of a Markov process

with the adjacent pixel correlation equal to p we get the covariance

matrix
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where the subscript R denotes row statistics and 012{ is the variance
of pixels along a row. Again, for the x and y separable case, the
covariance can be expressed as a direct product of the row and
column matrices, CR and Cc.

The Markov process assumption is valid for many types of
images, The computed correlation of adjacent pixels in the Kodak
GIRL picture are plotted in Figure 7. The slope of this curve
is the p for a first order Markov process and for this data p=.96.
Habibi and Wintz have reported p's in the range .78 to .92 for
four data sets [ 38].  Note that the data points are very close to
the straight line and since the ordinate in Figure 7 is logrithmic
this indicates the data is Markov,

Once the stationary covariance function has been determined
the discrete power spectral density may be computed. The power

spectral density in this case is the two-dimensional DFT of the

covariance function, thus
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N-1N-1 .
1 . o
S(u, v) = N Z 2 R(j, k) exp | - —%(Juﬂw) (34)
j=0 k=0

where N is the number of pixels in a line and number of lines in
the image and i=v/-1. The one-dimensicnal power spectral density
of the GIRL picture is shown in Figure 8.

A discrete image can be completely characterized statistically
by the probability density function (pdf) of the image. The most
common pdf is the joint Gaussian which can be defined by [39,

p. 255]
-n/2 * S ey
P(X}seeenx ) = (2m) |C|® exp {-#(x-D)[C]" " (x-D)'} (35)

where [C] is the covariance matrix and |C]| is its determinant,

X is the data vector, and I is the mean vector. This density is
not an adequate model for an unprocessed image since luminance is
a positive quantity and the Gaussian variables are bipolar. The
logariéhmic function converts unipolar data to bipolar data and, as
shown in Section II, the HVS contains such a transformation. If
we assume Gaussian statistics after such a transformation what
would be the pdf of the input? This question can be answered
quite simply by considering Figure 9 and applying a fundamental

theorem discussed in Section 5.2 of Papoulis [ 39, pp. 126-127].

\
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Figure 8.

(b)

Autocorrelation and Power Spectrum of GIRL
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Figure 9. Exponential Nonlinear System

Referring to Figure 9, let x be a Gaussian process;

therefore,
2 2
£ = 1 _-(x-w)°/20
0./211
Now
x
y = g(x) = e
or
X = Iny
and
d X
g'x) = g = e
From Papoulis
fx(xl)

¥ el

which becomes (after appropriate substitutions)

fy(-) = : exp {-(&n yl-,u)Z/ZOZ]

oY, 2m

39

(136)
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where ylz 0. This pdf is known as the lognormal distribution and
it has several interesting properties [40L Plots of this function
for several values of 4 and 02 are shown in Figure 10.
A plot of the first order histogram values obtained from the "
GIRL picture is shown in Figure 1. The similarity between
Figures 10 and 11 are readily apparent. If we plot the histogram
data on log-probability paper the curve of Figure 12 is obtained.

Straight lines on this type of plot indicate lognormal data and the

parameters u and g can be estimated from the curve by

M= 4n & (42)

50%

S
g = l.n{&(,so% + 84%)} (43)
°16% 50%

where ng indicates the value at x% [40, p. 32]. The data points
0

and

uw

[VAl]

are essentially a straight line over the 1% to 99% range which in-
dicates the image is strongly lognormal. If the GIRL image is
processed by the logarithmic point nonlinearity and the histogram
computed, the curves of Figures 13 and 14 can be obtained.
Figure 13 has the characteristic ''bell" shape of the Gaussian
pdf. Since the abscissa represents equivalent normal deviates and
the ordinate is linear, straight lines on Figure 14 indicate

Gaussian like behavior. The slopes of the lines are equal to the
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Figure 10. Frequency Curves of the Lognormal Distribution
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Figure 1ll. First-order Histogram of GIRL
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Figure 13. First-order Histogram of the Logarithm of GIRL
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variance of the underlying Gaussian processes. From Figure 14
we see there are three straight lines, two of which have equal
slopes (hence the same variance), symmetric about the 50% point
or mean. This indicates there are two underlying Gaussian pro-
cesses of equal means in this image. One process has a low
variance equal to the slope of the line passing through the 50%
point. The other has a higher variance equal to the slope of the
two outer segments of the plot. One may conjecture that the low
variance process is from the basic form or ''gestalt' of the image;
whereas, the hLigh variance process is a result of the edge infor-
mation and/or noise. From this discussion we see that the HVS
model helps satisfy the common assumption (which is unrealistic
for an unprocessed image) that imagery is Gaussian.

Let us now consider the entropy of the two pdfs we have
been discussing, We will use the common definition for differential
entropy

®

H(x) = -f p(x) £n p(x) dx ( 44)

where p(+) denotes the pdf. Shannon has shown for the Gaussian

case we get [41)

H(x) = oW 2re (45)
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where e is the base of natural logarithms. Consider the lognormal

distribution,

1 2 2
oxJ/2n j

The logarithm of this distribution is

2
in p(x) = -4n (oxv2m) - _(‘Lx_;-_h*_)_ (47)
20

and the entropy becomes

L5y 2
: HEx) = [ px) [zn(ox/z‘ﬁ) ; L‘—"—’E—ZE’—]dx (48)
A 0 20

where the lower limit of integration has been changed to 0 since x
E ranges from 0 to « for the lognormal pdf. Equation (48) can

E be rewritten as

Hx) = [ p(x) 4n 0J/27)dx + [px) tn (x) ax
0 0

® 2
+ [ oo LEESHL o (49)
0 20

Pr—

But for any valid pdf

fp(x) dx = 1 (50)

Therefore,




H(x) = £n (0v/2m) +] p(x) £n (x) dx
0

+ =5 [ b0 (40 x-1)” dx (51)

Now let y=4n x, which implies x=e  and hence, dx:eydy. Also,

when x=0, y=-o and when x==, y==. Substituting into equation
( 46) gives
1 (y u.)2
Bl ¢) = ————== uwp {- > } (52)
o 2n e/ 20
Making this substitution in equation (51) gives
= 2
H(*) = 4n (o« 2m) +f L exp {- jt%’—-ldy
o Ow2w 20
b fodpey’ (v -w°
e = expl-—"—%—]dy (53)
20 -= ov2m 20

The first integral is the mean and the second the variance of a

Gaussian pdf; hence,

H(.) = zn(cJZ) + 4+ -1—202
20
= An (oJZne) + M (54)

Thus, for a nonzero U we have an entropy change after passing
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Figure 15. Logarithmic Nonlinear System

through the nonlinearity which is equal to p, the mean of the output
Gaussian pdf.

Next we will consider the autocorrelation and power spectrum
for the system of Figure 15. The autocorrelation is (assuming

y is a Gaussian process)

V1 Y2 47l (70
dy
(Zn)N/Z iClé

R (T) = E{x(t) x(t+7)} =ﬂ f <
( 55)

where N is the dimension of the system and is equal to two for

the following discussion. Also,

o= iy, vy (56)

and

2 2
o o e (7)
[C] = i (57)

2 2
(o] T (o}
ny( )
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where py('r) is the normalized autocovariance defined as

o (1) = E{[y(t) -u]ly(t+) - u]} (58)
Letting )\lz )\2= -i= -J-T, equation ( 55) can be rewritten as
iNy, idy i
R.x(‘f) = E{e 1 le Z 2}

B Jam |c)|t

E-Der -

dy, dy, (59)

The above equation is in the form of a characteristic equation.
The characteristic function for a two-dimensional Gaussian of

nonzero mean is [ 39, p. 255]

=t = . —t—
s(n) = e 2V [CIA JATu ( 60)
where -)\-t= (-V/-1, -V/<1). Therefore, equation (59) reduces to

; 2
R_(T) = Q(j >= A [L+py(m)] + 1y () + ug(t+) o

where we have added the subscript y to the means for clarity.
[ Equation ( 61) gives the autocorrelation of x in terms of the
statistics of y.

In general, the autocorrelation can be expressed in terms of

the covariance of a process as
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2 2 2
R (1) =u +C (1) =n_+0 0/() (62)

From equation (61) we have

Z.
2u +0 [1+ T
My v[ oy( )]

R (1) = ui+o:ox(ﬂ = e (63)

Now

2
+ 80
M ’by

E{x} M = E{e’} = e 7 ( 64)

(the later equality follows since y is Gaussian) which implies

2
2 2u +o0
ue = e vy y (65)
.
Substituting this form into equation ( ©3) gives
%
2 2 g oy('r)
M +o 0 (T) =M e (66)
or
1
2
g g DY(T)
1+ —Sp(1)=e (67)
ux

2 k
o ® p, ()
x 2 2k 'y
1+ o, (m) =1+ °y°ym + E:OY w3 ( 68)
ux k=2
The sum in equation ( 68) represents the error if we use only
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the first two terms of the expansion. The normalized covariance

of any process will have an upper bound of 1. The value for ¢
is typically .5. Thus, the worst case expansion is on e'5 and the

error introduced by using the first two terms is less than 10%.

This is a very conservative error bound, particularly since it
assumes the data are completely correlated. Neglecting the error

term gives

°:2: 2
1+ = (1) =1+ Oyoy(f) (69)
ux
From equation ( 67) we could have approximated the logarithm
2
c’x 2
- = 70
|1+ — o (7) o p(T) (70)
X
o'2
Typical image data will give a —’f— ratio of .16. For the worst
Hx

case px('r)=l we get dn(1+.16)=.14842 which is within 8% of . 16.

Thus, within experimental error, we get the previous result

52 52
X X 2

In] 1+ =507 | = =5 8,07 =0 p(7) (M)
ux ux

2
ox
Al - (72)
ux
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Substituting into equation (71) gives

2
g

2
= 73
#Pxlt) = B0 (%) (73)

which implies that px('r)=py('r). Thus, the output autocorrelation

becomes

2 2
R(T) =pu_+0 p.(7T 74)
» v ybx ) (
By definition, the power spectrum of the y process is

s () = f R (1) T ( 75)

therefore

- 2, 2 -juT
S)(m) -.L [py+cy ax(T)] e dr

wT

5 2 - -jw
= 2mu S + o {px('r) e ar ( 76)

This relationship is of great importance in rate distortion appli-
cations. Given an input autocorrelation, we can compute the output

power spectrum which can be used in the equations [ 42, p. 117]

L
D, = -Z—H-Imm (8, S(w)] dw (77

(78)




Thus, the rate distortion curve of a process which has been passed

through a logarithmic nonlinearity can be specified. A detailed
discussion of rate distortion theory and the implications of the
result just obtained is contained in the following section, To com-

plete the present analysis let us return to the Markov assumption,

alr]

— 7
P (T) = e (79)
Substituting this form into equation ( 76) gives
-]
2( -a|t| -jwr 2
S (w =0Ie e dt + 2mu §(w)
Y( ) y ¥
-
2
2aag 2
= 5+ 2mu 6(w) ( 80)
y
a +w

We have shown that if an image source is lognormal and
Markov, then after passing through a logarithmic nonlinearity it
‘will be Gaussian Markov with a power spectrum defined by equation
(80). Furthermore, the entropy of the original source will be

changed by u, the mean of the resultant Gaussian process. The

importance of these results will be explored in Section V.
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SECTION IV

IMAGE CODING

The raﬁid growth in high speed, large storage, computational
facilities in recent years has made sophisticated digital image pro-
cessing a reality., The degree of success which can be achieved
was demonstrated world wide when pictures were transmitted to
earth from the moon and Mars. Two of the major problems that
occur in projects such as the Apollo moon missions are effective
data reduction and noise free transmission.

The first problem arises due to the bandwidth constraints that
exist on any practical communications channel. A standard NTSC
television frame contains 525 scan lines of 525 pixels, or approxi-
mately 218 data points. The human visual system can resolve
from 16 to 256 intensity levels depending on subject matter, type
of quantization, and viewing conditions. For the worst case
8 x 218 or 221 bits would be required to define a single mono-
chrome image. For flicker free television, we need approximately
30 frames per second which gives a bit rate of 226 bits/sec. If
we consider color, another factor of three is required; hence,

27

~2 bits/sec or 108 bits/sec would be the final required rate.

The second problem, that of noise susceptibility, is equally
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important. If one can transform the image in such a way as to

make it less sensitive to noise in the channel, then the signal to
noise ratio is increased. This leads to a lower power requirement
and a simpler channel coder-decoder design, which results in a
lower cost system.

The transmission of images is not the only application for
image coding. Obviously, with such a large number of bits per
image, storage (particularly high speed rapid access storage) be-
comes a problem. For example, a single frame of the color
image discussed earlier would require approximately 2‘22 32-bit
6

words of storage (packed as four 8-bit bytes/word), or 4x 10

words of core on a PDP-10 computer.

4.1. The Coding Problem

In the preceding paragraphs the applicability of image coding
was discussed in general terms. We will now present the basic
coding problem in more definitive terms. An image coding task
may be illustrated as shown in Figure 16. The scanner may be
one of many types depending on the source of the original image
(the '"'real world') and it will not be considered in detail. The
important point is that in most situations the scanner performs an

analog to digital conversion. Thus, X is an estimate (sampled and

v

il

quantized version) of the original object. The source encoder
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Figure 16. The Image Coding Task

55

|
.| SOURCE |, |CHANNELL, |
Iv




N ‘
Y

transforms X into a sequence of binary digits. The goal is to make
this transformation optimal in terms of data reduction and image
fidelity. The channel encoder codes the output of the source in
such a way as to insure the binary sequences can be reliably re-
produced after passing through the channel. The channel can take
on many forms. For example, it may be a storage device (an
information channel) or a transmitter-medium-receiver combination

(a communication channel). The two decoders shown in Figure 16

are obvious counterparts of the coders. The input to the display,
Y is the reconstructed X. The various blocks of Figure 16 can

be grouped in several ways. We will consider the channel coder, '

the channel, and the channel decoder to be a single entity. This

group can be characterized by a single parameter, the rate of the
channel. This rate will be defined to be the number of bits per
picture element (bits/pixel) which can be passed through a given
channel. We wish to find the source coding scheme which mini-
mizes the number of bits/pixel required to represent an image and
thereby reduce the required channel rate to a minimum. Given
this rate, the picture size, and pertinent time factors, the required
channel capacity can be computed., The im=zge coding problem
therefore centers around the design of an '""optimal' source encoder-

decoder,
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4.2, Pulse Code Modulation

An encoding scheme which has been widely used is pulse
code modulation (PCM). This technique, in its simplest form,
involves the sampling of an analog signal at a uniform rate and
encoding these samples in a binary coder. An adequate number
of quantization levels is required to maintain a good signal-to-noise
ratio. For most images this requires a minimum of 64 levels;
therefore, 6-7 bits/pixel is the normal rate of such a system. 1
If too few levels are used, the images will contain false contours.
This type of noise is more annoying to a viewer than additive
random noise of the same rms value. Roberts has used this trait
in a pseudo-random noise modulation technique which lowers the
rate to 4 bits/pixel [ 43]. Since the noise that remains in a
picture processed by the Roberts method is random it can be re-
duced by averaging. Sawchuk has found that a modified Roberts |
method which uses averaging and edge detection will produce 3.1
bit/pixel images ''almost'' as good as the original [ 441 and [45]
Another approach has been to use non-uniform quantization [46] and
[47]. These techniques minimize the quantization error by taking
advantage of the statistical character of the image. For the Max
quantizer, optimum decision and reconstruction tables are computed
by using the probability distribution, p(f). Alternatively, a non-

linear transformation based on p(f) can be performed and the result
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linearly quantized. This latter procedure is called companding.
The companding and Max quantizer methods can reduce the rate
by as much as 1 bit/pixel.

Conventional PCM makes no assumption about the relationship
between adjacent pixels in an image. By default, the pixels are
taken to be uncorrelated and as Habibi and Robinson have pointed
out, pictures satisfying this assumption occur in places such as
television screens after station sign off and are of little interest
[48]. Schreiber has shown the conditional entropy of a PCM
signal (for the case of uniform amplitude distribution and picture
correlation so high that pixel to pixel variations are primarily due
to random Gaussian noise equal to one quantization level) is 1.12
bit/pixel [131 This value represents a lower bound to the re-
quired channel capacity for PCM regardless of the statistical
relationships employed. If the imagery being coded is multiframe,
the rate can be reduced by as much as a factor of five because

of the interframe redundancies [48].

4.3, Differential Pulse Code Modulation

As pointed out earlier, PCM makes the assumption that the
data is uncorrelated and the same number of bits is assigned to
every data point. Since picture data is obviously correlated this

procedure is inefficient., One way to obtain less correlation

58




between the points to be coded is to use a linear predictor to
generate a difference signal and quantize this difference signal
with a Max quantizer based on the appropriate probability density
function. This type of coder is referred to as a differential pulse
code modulator (DPCM). Several different types of DPCM systems
have been used with the basic differences lying in the predictor
design [48, pp. 25-28]. The rates achieved with DPCM are about

one half those obtainable with PCM [27].

4.4, Transform Codirg_

Another way to decorrelate image data is to perform a two-
dimensional spatial transformation. As discussed in Section 3. 3,
the optimum transform would be the KLT; however, the large
number of required computations make it a poor choice for coding.
Several of the fast transform algorithms have been used [29,
Chapter 7]. Transform coders perform two significant operations
which make them more efficient than most other types of coders.
The first operation is that of performing the linear transformation
which maps the statistically dependent pixels into a set of ''more
independent'' (decorrelated) pixels. The second operation is to code
each transformed pixel independently, assigning the number of bits
according to the variance of that coefficient and/or the location of
the coefficient in the transform domain. The first criterion gives
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more bits to those pixels with the highest variance or information.
The second criterion (particularly for the Fourier domain) assigns
more bits to those areas in which the HVS sensitivity is highest.

A major disadvantage of transform coding techniques is the
entire image must be available before processing begins. Thus,
large amounts of buffering are required for a ''real-time'' trans-
form coding system. One solution to this problem is to process
the image in blocks. For example, rather than compute the }
256 x 256 DCT of a 256x 256 image one may compute 1024 8x 8 |
cosine transforms by performing a 32x 32 partition of the original
image. Only eight lines of the image are required for processing
to begin and, in addition, the two covariance matrices which need
to be diagonalized to determine bit assignments are only 8x 8.
In other words, a single 8x 8 bitmap is sufficient for coding the
entire 256 x 256 image. To visualize how the 8 x 8 bitmap is used,
the partioned cosine transform domain may be reordered as shown
in Figure 17. The 32x 32 subpicture shown in the upper left was
formed with the 1024 '""DC'" terms of the 8x 8 block transforms,
the next subpicture is from the (0,1) harmonics, etc. In this
manner the 8x 8 block transform produces an 8x 8 array of sub-
pictures. The reordered transform is called a Mandala transform
and Kajiya [ 49] has suggested that the transition to higher har-
monic subimages rotates the ''feature'' space into a ''texture'' space.
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Figure 17. Mandala Ordered 8 x 8 Block Cosine Transform
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In Figure 17, the subpictures have been scaled individually for

viewing purposes, There is more than six orders of magnitude
difference between the coefficients of the upper left and lower
right subpictures. When coding this image every term in each

: subimage is coded with the same number of bits; therefore, only
an 8x 8 bitmap is required. Note how the increasing harmonics
(left to right and top to bottom) represent more and more "gdge"
information and the highest harmonic is8 almost random noise or,
if you like, texture.

Since an 8x 8 block transform coding technique uses an 8x 8

covariance matrix, this method does not take full advantage of the
redundancies of the image. The performance of block coders
improves with increasing block size; however, correlation between
adjacent pixels is small fc~ shifts greater than 20 [ 38).  This
reduces the error due to block size to an insignificant amount for
n>16 [ 11, p. 815]. For a léx 16 block size and at 1.5 bits/pixel
the Slant, Haar, Hadamard and Fourier transforms have been
shown to give results similar to the KLT [ 50]. Achromatic
pictures have been coded at 1 bit/pixel with a root mean square
error of .8% [ 51 Since transform coding techniques usually
involve some type of spatial filtering, they are a type of adaptive

or psychovisual coder.
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4.5. Psychovisual Coders

Psychovisual coders attempt to take advantage of the limita-
tions of the HVS and code only that data which can be perceived or
is meaningful. Since the visual system is the means by which
most imagery is ultimately used, compared, and/or judged, psycho-
visual coding should prove effective. A common point which is
used to support the importance of this technique is that the human
observer can only abscrb about 50 bits/sec [27).  When compared
to 108 bits/sec (color television) the reduction is six orders of
magnitude! But the human observer is usually in a cognitive mode,
absorbing the bits of interest. When one views a scene, the entire
scene -- in complete detail -- is not perceived at once. If we know
exactly where the viewer will look and what mode he is in, the
"image'' coding problem would be substantially reduced. However,
the cost of coding this peripheral information would place the rate
well above the 50 bits/sec bound. Thus, the bound is interesting
but far from obtainable.

Nonetheless, psychovisual coding is important from two
aspects, The first, as previously mentioned, is ''why transmit or
store that which is not used anyway?'' The second, and perhaps
more important aspect, involves errors in and the fidelity of the
coded images. If we implement a coder in a ''perceptual space"

which minimizes the visual effects of error, i.e., maintains a
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maximum image fidelity, by how much can we reduce the rate and
still obtain usuable reconstructions? A concomitant benefit of such

an implementation is the definition of a valid error criterion. At

T

present, most coding results are judged subjectively or with an
image space mean square error (MSE) criterion (which is known
not to be valid), However, if a MSE criterion is used in a

perceptual space -- hence a perceptual MSE (PMSE) — its utility

should be increased significantly, Once such a fidelity criterion

is precisely defined, development of optimal coders with specified
rates and distortion levels becomes possible. Such an approach

can be cnuched quite nicely in terms of rate distortion theory.

4.6. Rate Distortion Theory

Berger has pointed out that there are two basic problems to
be coped with when designing a coding system; (1) what information
should be transmitted? and (2) how should it be transmitted
(42, p.2]? Early work in information theory concentrated on the
second problem. In 1959 Shannon addressed the first problem
[ 521 He defined the rate distortion function of an information
source with respect to a fidelity criterion and established the
fundamental theorems basic to rate distortion theory. Stated
simply, the basis of this theory is the rate distortion function of

a source with known probability distribution determines the
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minimum channel capacity required to transmit the source output

as a function of the desired minimum average distortion [ 53].

The distortion function, or fidelity criterion, is a measure of

agreement between the source and system output specified by the

user. The theory is covered in detail in Berger [ 42] and
Gallager [54, Chapter 9]. A fundamental result is if D is the
desired average distortion and R(D) is the rate distortion function,
then a system can be designed that achieves the distortion D if
and only if the capacity of the channel between the source and user
is greater than R(D). Thus, R(D) is the effective rate at which
the source produces information subject to a distortion D. For
D=0, R(0)sH(.), where H(+) is the entropy of the source. As
D increases R(D) decreases monotonically and -- more importantly
-- in a convex manner, usually becoming zero at some finite value
of distortion, Dmax' A typical R(D) versus D curve is shown in
Figure 18,

There are two key points in applying rate distortion theory.
First, the probability distribution of the source is required.
Secondly, the rate distortion function must be defined. Finding
the probability distribu‘ion of a class of images is not a simple
task, particularly for the sources with memory (the more interesting

ones as noted earlier), Once the distribution is determined and a

distortion criterion selected, the problem of deriving R(D) wusually
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Figure 18. A Typical Rate Distortion Curve
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Figure 19. R(D) for a Memoryless Gaussian Source and MSE
Criterion
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proves to be unsolvable. One combination which is tractable is an
independent Gaussian source with a MSE distortion measure. The
independent Gaussian assumption is certainly not valid for image
sources; however, this particular combination is an upper bound on
achievable performance for any source with common second mo-
ments [ 53, p. 802].

To obtain this simple result we must first define the source.
Let X=[xi, i=1,2,...,N} be the set of independent source samples
which are Gaussian with zero mean and variance 02. The output
of the source decoder (see Figure 10) will be represented by

Y= {yi, i=1,2,...,N}. The distortion measure is defined as
Al 2
dX,Y) = 2 (y, - x,) ( 81)
i=1
so that the average MSE becomes
D=+ Y Elly,-x)") (82)
N i i

i=1

where E{*] denotes the expected value operator. The rate dis-

tortion function corresponding to these conditions has been shown
to be [42, p. 99]
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02 2
£ in 5 , 0sDsgo
R(D) = (83)
0 2 D> oz
] This particular function is illustrated in Figure 19. The rate

predicted by equation ( 83) is achieved theoretically by encoding

in such a way as to produce an output error which is Gaussian

with variance D and is independent from sample to sample. In
practice, the rate is approached within 1/4 bit per pixel by optimum
quantization (via a Max quantizer [47] and noiseless coding [ 53],
p. 803]. Davisson has given the following rough intuitive justifi-
cation of the rate distortion function in terms of quantizing [53, i

p. 803]. The noise standard deviation, as a function of the signal

amplitude, is inversely proportional to the number of quantization
levels. Therefore, the number of.levels should be proportional to
o/V/D and the number of information bits should be the logarithm
of this quantity [ 55]. If the distortion is greater than the
variance of the signal, the transmission rate should be zero since
nothing need be transmitted. This is the relationship established
in equation (83),

In the preceding discussion we defined a source X and an

encoded output Y and obtained a set of parametric equations which
define the rate distortion relationship. Let us now consider the
input to be a raster scanned image, u(x,y), Further, assume that
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this image is passed through a linear system defined by the trans-

fer function A(f ,f ), thus
X'y

v(x,y) = ux,y) a(x, y) ( 84)

where a(x,y) is impulse response corresponding to A(fx,fy). The
encoded output, denoted as G(x,y) will yield a similar result,

therefore the MSE distortion becomes
4, %) = [[ [vix,y) - 5x, y1)P dxdy (85)
=[[ (tatey) @ 3t y)] - (i y) @ 2, y)]} 2 dy
=[] (uty) -5, y)] @ atx y1) 2 dx ay
=H [Au(x, y) a(x.v)]zdxdy ( 86)

where Au(x,y) denotes the difference picture formed by subtracting
the coded image from the source image. Now that the distortion
measure has been defined we need only specify the probability
distribution of the source to be able to calculate the rate distortion
function. We will take ny to be a two-dimensional random field
representing the random source (a collection of random variables

parameterized by two independent variables)., Let the estimate of

the mean be

= 87
m E[ny} (87)
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and the correlation function be

Ru('rx,ﬂ'y) = E Ux+T YT ny (88)
x b §

We will assume the joint distribution of ny to be Gaussian,

Again, even though this may not be the correct distribution, this

is a worst case assumption [41) Sakrison and Algazi have

shown that for a raster scan large compared to the correlation

distance of the image, the rate distortion function is given para-

metrically by [561.

. S (f,f)
R(8) = — [ 1og2[ =2 ]df df_ (89
S.(£.,£)>8 =
x'y ,
d(e) = H min(S (£, £ ) 0] df df ( 90) !

in which Sv(fx,fy) is the power spectral density of v(x,y) and is

i defined as the Fourier transform of Rv('rx,‘ry).
Briefly reviewing, the following assumptions were made in

obtaining equation (89) and equation (90):

(1) The class of images can be represented by a uniform,

homogeneous, and stationary random field ny.

(2) The probability distribution of ny is a two-dimensional

joint Gaussian distribution.
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(3) The autocorrelation, Ru(x. y), and the corresponding

power spectral density, Su(fx,fy), of ny are known.,

(4) The system transfer function A(fx,fy) and hence, the
power spectral density, Sv(fx.fy) are known.

Given these assumptions, we may compute a rate distortion curve
similar to that in Figure 19 by varying distortion, 8, in equations
(89) and ( 90). This curve will represent a theoretical
bound by which the performance of any coder implemented within

the system can be judged.
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SECTION V

STATISTICAL ANALYSIS OF THE HVS MODEL

In Section Il we developed a mathematical model for the HVS
(see Figure 2). Subsequently, some statistical properties of
images were discussed in Section III and the basics of rate dis-
tortion theory were presented in the previous section. In this
section we will bring these ideas together and deveiop a set of
rate distortion curves which are valid for a perceptual domain
defined by our HVS model. We will begin with an achromatic

model,

5.1. The Achromatic Case

If we assume a black and white image, then the two

chrominance signals ¢, and <, in Figure 2 become zero. Thus,

1
the luminance signal, £, is the only output of our model and the
model reduces to that shown in Figure 20. This model has been
discussed extensively and analyzed by Hall and Hall [l A
fundamental result of the analysis was that the high frequency roll-
off of the overall describing function for this system is a function

of contrast. In particular, as the contrast of the input increases,

the system sensitivity to high spatial frequencies decreases. This
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Figure 20. Achromatic HVS Model
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Figure 21. Simplified Achromatic Model
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particular characteristic is not present in the model of Figure 2L

The simplified model in Figure 21 is obtained from the
model of Figure 20 by assuming that the intensity range of input
images is in a linear portion of the logarithmic nonlinearity. Thus,
the low-pass spatial filter can be passed through the nonlinear
function and combined with the high-pass spatial filter giving an
overall bandpass function. This particular type of argument is
used in justifying the contrast sensitivity functions which are
obtained from sine-wave grating experiments. Indeed, the bandpass
filter of Figure 21 would be of the iorm shown in Figure B.3.

We have previously compared the results of processing black
and white images through these two achromatic models [57]. For

the model of Figure 20 a low-pass filter defined by

Hlp(u)) = 2L (91)

7
.49 +

was used. This function corresponds to a 3mm pupil and it is

-3dB at 6.6 cycles/degree. The high-pass filter was defined by

-4 2
10 3+'JJ s (92)
4x10 "+ .8w

th(w) =

The model shown in Figure 21 was implemented with a filter

function developed by Mannos and Sakrison [7] and it was defined

as
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prmn = 2.6[0.0192+-0.018w]exp[-(0.0l&nf'l] (93)

This particular function peaks at 8 cycles/degree and an isotropic
version is shown in Figure 22. Two 512x 512 images (one an
aerial photograph of Los Angeles International Airport [LAX] and
the other a country bridge scene) were processed with the two
E‘ achromatic models. The results are shown in Figure 23. From
the pictures in Figure 23 it can be seen that for practical pur-
poses the two models produce equivalent results. The only
difference is in the peak frequency response which gives slightly
more blur in the full achromatic model case. Thus, it appears
that the bandpass model is valid for ''real-world' achromatic
images.

In Section 3.5 we found that an input process with first-order
Markov statistics produced a power spectrum (out of a logarithmic
nonlinearity) given by equation (80). The output power spectrum

from the reduced achromatic model is simply

2
! = 4

S, () sy(w>Ipr(w)| (94)

where
Zc,o2 2 )

S (w) = + 2 8(w) (95

Y a +w y
and pr(w) is given by equation (93) Habibi and Wintz have
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Reduced Achromatic Reduced Achromatic
Model Model

Figure 23. LAX and BRIDGE Images
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Figure 23.

ILAX and BRIDGE Images
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shown the Markov assumption to be valid for raw images and a

typical value for a is .1 [38]. Typical values for os and u: are
.5 and 16.8 respectively. These parameters give the set of
curves for Sy(w). pr(w), and Sz(w) shown in Figure 24.

The power spectrum defined by equation (94) is valid for
the model shown in Figure 2l. Although the experimental system
comparison shown in Figure 23 indicates the effects of the models
in Figures 20 and 21 are similar, a question of interest is how
does Sz(m) compare to St(w)? From Figure 20, given an input process
q with autocorrelation Rq('r) and power spectrum Sq(w), the power

spectrum Sr(w) is defined by
2
S (w) = Sq(m) lHlp('n)\ { 96)

where Hlp(w) is given by equation (91). By definition, Rr('r) is

the inverse Fourier transform of Sr(m). hence

@
e 2 jur
R (1) = 5 ISq(w)lHlp(w)l "7 dw ( 97)
-®
We also known that in general
2 2
R.(T) =H_+ a0 p.(7) (98)

which implies

(99)
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80




Now from equation (74)

2 2
R'('r) = u’ + o‘ pr('r) (100)
therefore
2 ": °f 2
R.(T) = u] + 5 R - M gy
r r

Taking the Fourier transform we get

2 2
2 %M o:
Sg(w) = 2mju_ - 2 6 (w) +—0—2-7[Rr('r)] (102)
r r

where J{ ] denotes the Fourier transform operation. But R (1)
is given by equation (97) in terms of the inverse Fourier trans-

form of Sq(w)lHlp(uj)IZ. hence

O‘ZIJ.Z 02
2 T s 2
Sg(w) = 2mu_ - " O(w) + O—ZSq(w)lHlp(w)l (103)
r r

Of course St(w) follows directly from
S,(w) = S_(w)|H,_ (v (104)
t s hp"

where th(w) is given by equation (92). If we assume Rq('r) to

be first order Markov of parameter a then
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a uz ] 02 2
S = {2n HZ £ s 5(w) + s 20 .14
¢ ' 02 ct'2 (a.2+ wz 49+w2 z
- : s ) )
2
2 -4
+ 10
% | (105)
4x10 "+ .8w

2

2
r and g5 (as

Figure 25 was obtained by settinga=.1 and using M., Ug,?

determined from actual images) in equation (105).

In Section 3.5 we showed the pdf at the output of a logarithmic
nonlinearity is Gaussian, given that the input pdf is lognormal. In
addition, Figure 12 indicated that the lognormal assumption is
valid for typical imagery and Figure 14 shows the pdf of the
output to be strongly Gaussian. Furthermore, the reasonable
assumption of Markov statistics at the input of the nonlinearity
leads to an expression for the power spectrum Sy(w). The band-
pass filter in the achromatic HVS model has also been verified by
several different experiments and it is given by equation ( 93).

A review of the basic assumptions which led to the rate distortion
function defined by the pair of equations (89) and (90) reveal
that they have all been satisfied with the possible exception of
stationarity. Thus, we see that the achromatic HVS models of
Figures 20 and 21 enable us to apply the rate distortion equations
to achromatic imagery. The rate distortion curves shown in

Figure 26 were obtained by solving the parametric equations
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(89) and (90) for various values of distortion 8. This

operation is sometimes referred to as the ''water-filling'"' procedure.

5.2, The Chromatic Case

We will now consider the color image case, i.e., the
chrominance signals < and <, in Figure 2,2 are not both zero.
If we again assume the low-pass spatial filters can be passed
through the logarithmic nonlinearities the model reduces to that
in Figure 27 which is precisely the Frei model for color vision
(3.

In this model the matrix [T] is defined by equation (23)

and the three constants k. , k and k3 are 21.5, 41.0, and 6.27

1 2"
respectively [3]- The three signals, !,*, cl*, and c: are there-
fore given by ;
. 21,5, o0 o0 I &
ey | =]-41.0 40 0.0 || t; (106)
e 6,27 0.0 6.27]| ¢

The L* signal is identical to the luminance signal of the achromatic H

case and the bandpass spatial filter in this channel is identical to

the achromatic case and is defined by equation (93). The two
chromatic channels have bandpass characteristics which peak at 4

cycles/degree for c

and 2 cycles/degree for c
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Figure 27. Simplified Chromatic HVS Model
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frequency points (for £, c

, and cz) have been established through

1
psychophysical techniques by Faugeras [37, Figure 3.9]. The

three bandpass filters may therefore be defined by

H,(w) = 2.6[0.0192 + 0.018w] exp [-(0.018w) " ']

H, (0) = 2.6[0.0192 + 0.036u] exp [-(0.036w) ' 1)

H, (8] = 2.6[0.0152 + 0. 0724] exp [-0.072m 1) (107)
where the subscripts {, <) and <, refer to the appropriate channel. {

The probability density function which was shown to be valid
for the output of the achromatic model is still valid for the

luminance channel of the chromatic model. In addition, if t; and

e

* * * *
t3 as well as tl in Figure 27 are Gaussian then <, and <, and

of course c1 and c2 are Gaussian., This follows since the sum of

two Gaussianly distributed processes has a Gaussian pdf. Pro-

bability plots of £, c.,, and <, for the Kodak GIRL are shown in

1!

Figure 28. The straight lines in these three plots indicate the

:

underlying pdfs are strongly Gaussian. i
:

In order to apply the rate distortion equations developed in ?!
Section 4.6, we need the output power spectra for {, <y and Cye ‘

We may again draw upon the results of Section 3.5 to establish

s
3

*
’

that the processes at t:1

*
tZ' and t_ are first order Markov if the

original inputs are Markov. Plots of the first 14 spatial correlation
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4

. * % *
coefficients computed in the tl' tz, and t3 planes are shown in

Figure 29. They form three straight lines in the log-linear
plots which indicates all three processes are first order Markov.

Furthermore, the parameters a, i, and 02 in equation (95) can

be determined from the data; thus, the power spectra of t?, t:,

E
and t3 can be computed. The value for a is simply the slope of

the appropriate line in Figure 29. The mean, 4, is defined by

™M=z

N
* 1
uo= Ef{t (xy)) = —5 3.

tl (%,y) (108)
N x=1

1

<
"

where i=1,2,3 and N is the width and Jength of the square image

2
array. Similarly, the variance, 0 , becomes

N N
2 2 1 *2 2 2
of = E(ft; e,y -u]’) = —5—{ 3 2L 6y - N ui} (109)

[}
—
»
[}
—
<
]
—

Values for these parameters as determined from the GIRL image

are shown in Table 1. From equation ( 106) £ 21, St::,

therefore [ 39, p. 339, Table 10-1]

2
S ) = [21.5]% 5 _(w) (110)

) t)

Equation (106) also defines CT and c; as

MY ) M T
e, = -4lt, + > ( 111)

88




TABLE 1

STATISTICAL PARAMETERS FROM GIRL IMAGE

Color 1
oordinate ‘ i .
Parameter 1 2
i
a 0.0388 0.0228 0.024
W 3.96 -0.228 -0. 064 .
2
o} 18. 26 3.90 1.26

89




and

% * *
o5 = -6.27t1 + 6.27t3 (112)

Now the sum of two random variables,
z(t) = x(t) + y(t) (113)

has a power spectrum defined by [ 39, p. 337]

; Szz(w) = Sxx(w) + Syy(w) + Sxy(w) + Syx('n) (114) J
i
‘ Therefore,
s () = 41%s L) + 41%s L(w) - 41°s o ) = 41%s o o (w) (115) ‘
cl I:l tZ tltz tztl
and
2 2 2 2
S ,(w) = 6.27°5 (w) +6.27°5 _(w) - 6.27°S , (w) - 6.27"S _ ()
s * & *1*s faty
(116)

* *
define the power spectra of <, and ). For the case of decorre-

lated color planes the cross-spectra are zero and equations ( l15)
and (116) reduce to

2
S ) = 41°[s ,(w) + 5 ,(w)] (117) !

% % o |

and




S (W) = 6.272[5 L) S =.‘(m)] (118)

€a k ¢

Since we have expressions for S *(uj), S *(w), and S *(w). the output
L c c
1 2
power spectra are defined by

2
S, =8, |Hw]
2
S. W =S (w |H, (@]
1 ci’ 1
and
2
S () =S L |H_ (] (119)
2 <, 2

where Hz(w). Hcl(w), and ch(w) are given by equation (107)
Plots of Sz(w), Scl(w), and Scz(m) are shown in Figure 30.

The three curves of Figure 30 can now be used to compute
a rate distortion curve. A slight modification of equations (89)

and (90) is required to accommodate the three independent

spectra; hence,

3 si(fx'f )
R(6) = &Z} f log, ——Y—e dt ar (120
i=1 5,6, )>8
and
3 (-]
d(e) = Zf min [S,(£, ,£,), 8] df, df (121)

i=1 ==
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where i=1,2,3 refers to £, ¢ and <, respectively, The re-

1’
sultant rate distortion curve obtained by using the parameters in
Table 1 is shown in Figure 3L

In this section we have developed expressions for the output
power spectra of our achromatic and chromatic HVS models. In
addition, a set of parametric rate distortion equations based on mean
square error and Gaussian pdf was used to obtain a set of curves for
the theoretical coding performance of our HVS models. These curves
can be used to evaluate the results of the coding experiments which

will be detailed in the next two sections.
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SECTION VI

ACHROMATIC CODING EXPERIMENTS

In this secticn the results of several coding experiments on
black and white imagery will be presented. The initial experiments
involve standard transform coding techniques and are included for
comparative purposes, The later experiments make use of the

achromatic model of the HVS developed in Section V.

6.1. Block Cosine Transform Coding

Block transform picture coding has been investigated by several
researchers [11],[38], and [ 58] and we will not develop the theory
here. Rather, the procedure as implemented, will be presented
and the reader is referred to the references for the theoretical
details.

The first step is to obtain a variance matrix for the picture
to be coded. This matrix will be of the same block size as the
subpicture size. The variance matrix is used for two purposes,
The number of bits to be used to encode a particular transform
coefficient will be proportional to the variance for that coefficient,
Also, each coefficient will be normalized by its respective variance

prior to being quantized with a Max quantizer [47]. We will
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assume the picture data is first order Markov. A block Toeplitz

array with the desired correlation, p, is generated as

= -
2 N-1
1 ) 0 svee P
2

P 1 ] P
92 [

2
b P
gt ki (122)

where N is the width and length of the subpicture., For the case of
spatially separable transforms, two of these arrays are used -- one
for the row and one for the column statistics. They are both
transformed (for this example by the DCT) yielding row and column
covariance matrices. The diagonals of these two matrices are

used to form a normalized variance matrix via an outer product
expansion. Finally, assuming ergodic images, this matrix is
multiplied by the spatial variance to obtain an unnormalized variance
matrix for the transform domain.

The process used for determining the bit assignment was
developed by Pratt [ 59); and, for the case of Gaussian data, the
algorithm is optimal. Basically the algorithm uses the Gaussian
error function to decrement the largest variance of the array one
bit at a time, until the total number of desired bits have been

'"'spent.'" Each time a variance is decremented the bit value for

96

BRI O 4 D iy e bk

A S N




— T ————————

that location is incremented. When the process is completed the
bitmap which has been generated will produce the minimum error
if the data are Gaussian. If the desired average bit rate is B,

and the subpicture size is N by N, then this procedure requires

BN2 passes thru N2 data points. The computation involved grows
quite rapidly and for N>32 the cost versus optimality issue must
be considered carefully. For this experiment N=8 or 16; there-

fore, the computational time was not a major factor.

Once the variance matrix and bitmap are obtained, the picture
is divided into subpictures of size NxN and a two dimensional co-
sine transform is performed on each subpicture. A reordered and
scaled version of a 256 by 256 picture which was cosine transformed
in 8x 8 blocks was shown in Figure 17. The original picture

(Figure 32) was a low noise version of the Kodak GIRL (note that

she is facing the opposite direction from that usually seen. This
is to aid in distinguishing this low noise version). The histograms
and other statistical data discussed in Section 3.5 were obtained
from this image. The vertical and horizontal correlation were
nearly equal and a value for p of .96 was used to code this image.
A 1 bit/pixel 8x 8 bitmap is shown in Figure 33. The coded re-
sult for two block sizes is contained in Figure 34.

Close inspection of Figure 34 reveals one of the problems

with this type of coder. When a subpicture contains a high contrast
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Figure 32, Low-noise GIRL (original)
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Figure 33, A 1 bit/pixel Bitmap (8 x 8 block size,
P =.96)
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(b)

Figure 34. Two 1 bit/pixel Cosine Coded Images
a) 8 x 8 block size, NMSE = . 39%,
b) 16 x 16 block size, NMSE = .36%
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edge, the D.C, value for that block's transform is coded with an
error large enough to make the subpicture visible. This type of
noise is very annoying to the viewer. Channel errors in the D.C.

term also produce the same effect.

6.2. Full Image Cosine Transform Coding

This section covers the special case for N equal to the image
width and number of lines, i.e., the subpicture size equals the size
of the input image. Again, we will assume first order Markov
statistics. Since N=256 we will not be able to use the optimal
Pratt bit assignment algorithm. For this experiment we will use

the equation

o
1]

N N
e LE zxogloofj : -12? bl loglooil (123)
k=1 £=1
where bij is the ijﬁ entry in the bitmap, B is the desired average
bit rate, oizj is the variance of the ij& transform coefficient and
('l denotes integer part of. This algorithm is suboptimal due to
the rounding operation ('—II [59). The cizj are obtained from a
256 x 256 variance matrix computed as in the previous section.
Because the variances become very small for large ij, we will use
the fewest bits for these terms. A typical bitmap is shown in

Figure 35. The white area in the upper left represents the maxi-
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Figure 35. A 256 x 256 Cosine Domain Bitmap, p = .96

Figure 36. A 256 x 256 Cosine Coded Image
1 bit/pixel, NMSE = ., 24%

101




mum bit assignment which was nine in this case. The black area
had zero bits assigned and the intermediate grays varied between
one and eight., Two comments are in order. First, the upper left
point is the "D, C." cosine coefficient and for this experiment this
term was not coded, i.e., the bits allocated to this term were
equal to the machine word size (36 bits). This ''extravagence"
represents an increase of 27/N2 or ,000412 bits in the average bit
rate. In doing this a stability in the coded image mean, which
minimizes error and eliminates the need for scaling before viewing,
is achieved. The second comment is in regards to the shape of
the contours in the bitmap. They are hyperbolic with maximum
number of bits assigned to the coefficients on the transform axes.

An image coded to 1 bit/pixel in this manner is shown in Figure

36.

6.3. Full Image Fourier Transform Coding

The procedures discussed in the previous section can be im-
plemented, with minor changes, in the Fourier transform domain.
The major difference between the cosine and Fourier transforms is
that the Fourier is complex. At first glance it would appear that
we will double the number of coefficients which must be coded.
However, due to the property of conjugate symmetry, which holds

for the transform of pure real data (i.e., no imaginary part), this
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is not the case. Thus, a 256x 256 image transforms to a 256x 129
complex Fourier plane. There are several ways to order the fre-
quency coefficients in this plane. A common arrangement, and the
one used in this work, is shown in Figure 37. In this diagram
the D,C. term is located in the upper left corner. Frequency in-
creases downward and to the right until the (0, 128) point is reached.
The frequency decreases (on the right) from this point until the

(0, -1) frequency is reached. The semicircles represent contours
of constant radial frequency. Two 256 x 256 block Toeplitz matrices
are Fourier transformed and the diagonal vectors are used to
generate the desired 256 x 129 variance matrix and bitmap. A
typical bitmap is shown in Figure 38. This bitmap readily
illustrates the frequency symmetry. Note that the hyperbolic
contours are still present.

The bitmap of Figure 38 is not complex. The complex
Fourier coefficients are coded by Max quantizing the real and
imaginary part of each coefficient to the corresponding rate in the
bitmap. Therefore, twice the number of bits allocated to that
location in the real bitmap are used and the final average bit rate
is ZB/NZ, where B is the total number of bits in the bitmap and,
for the present example, N =256. A picture which has been coded

in this manner is shown in Figure 39.
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6.4. Block Cosine Coding in the Perceptual Domain

Thus far we have considered the coding of the original image
only. We will now consider the coding technique discussed in
Section 6.1 as implemented on a preprocessed image. In particular,
one processed with the achromatic model of the HVS as shown in
Figure 21. The complete process is illustrated in Figure 40.

] A preprocessed image is shown in Figure 4l. For this experi- f‘i
ment the first order Markov assumption was still maintained and
the Pratt bit assignment algorithm was used. The results for two

block sizes and 1 bit/pixel are shown in Figure 42.

6.5. Full Image Cosine Coding in the Perceptual Domain

The full image techniques of Section 6.2 can be applied to the

HVS preprocessed image also. The pro-ess is the same as that

shown in Figure 40. The image shown in Figure 43 1is al bit per
pixel result. The first order Markov assumption was used for this

image and the bitmap was similar to that in Figure 35.

6.6, Full Image Fourier Transform Coding in the Perceptual

Domain
In Sections 6.4 and 6.5 we considered the cosine coding of
preprocessed imagery. The filtering process shown in Figure 40.

is implemented in the Fourier domain, thus coding in the Fourier
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Figure 37, Fourier Domain Frequency Location

Figure 38. A 256 x 129 Fourier Figure 39. A 256 x 256 Fourier
Domain Bitmap Coded Image
1 bit/pixel,
NMSE = . 23‘70
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Figure 40. Psychovisual Cosine Coder

Figure 41. A HVS Preprocessed Image
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(b)

Figure 42. Psychovisual Cosine Coded Images, 1 bit/pixel
a) 8 x 8 block size, NMSE = .57%
b) 16 x 16 block size, NMSE = , 50%
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Figure 43.

A 256 x 256 Psychovisual Cosine Coded Image
1 bit/pixel, NMSE = .44%

108




domain is more expedient. The revised process is diagramed in
Figure 44. The techniques for obtaining the variance matrix and
bitmaps discussed in Section 6.3 were used to code the HVS pre-
processed image. A bitmap similar to that of Figure 38 was

obtained. A coded image is shown in Figure 45.

6.7. Perceptual Domain Power Spectrum Coding

The coding techniques discussed in previous sections had two
things in common: a variance matrix was computed and first order
Markov statistics were assumed. The Markov assumption is rea-
sonable for the original image domain. In Sections 3.5 and 5.1 it
was shown that the first order Markov assumption for the input to

the achromatic HVS model led to a power spectrum equation of the

form
Zcx.o2 2
Sz(wr) = __Lz 3% ¢ eruy b(mr) lep('”r) (124)
a +w
B
where pr(w) is defined by equation (93). If we choose to not
code the D,C. term then we need only consider
20.02 2
5,,) = |5 IHbP(”‘) (125)
Qa +wr

This equation defines the power for all >0 and can be used to
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Figure 44, Psychovisual Fourier Coder

Figure 45. A 256 x 256 Psychovisual Coded Image
1 bit/pixel, NMSE = , 26%
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determine the variance and bit allocation for any wr>0. Thus, the
modification of the Markov statistics which occurs due to the band-
pass filter can be taken into consideration. Moreover, the genera-
tion of a 256 x 256 variance matrix is no longer required.

To obtain a bit assignment one merely solves equation (125)

for a particular mr,
w = W Viz+j2 (126)

where i and j are the indices of the Fourier coefficient to be coded
and W is the scale factor for conversion to radians/degree. The

computed value from equation (125) , call it cizj' is used in

2
b, = [“82 Y oij'l (127)

to obtain the bit allocation for the ijﬂi coefficient. Equation

can be rewritten as

l 2 l
= 128
bij logz cij + Iogz Y (128)

The factor, Y, is selected to yield the desired bit rate. From

Figure 24 jt can be seen that logmoizj has a maximum value of

approximately -2, therefore Y should be about 5x lO4 to obtain 9
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bits for bij maximum. Experimentally, it was found that average
rates of .1 to 1 bits/pixel required y's of 8.9)(104 to 9x 105.

The Fourier coefficient to be coded is normalized by Oizj and Max
quantized to bij bits for the real part and bij bits for the imaginary
part. Note that no storage other than that for the transformed
image is required. A typical bit allocation is shown in Figure 46.
The obvious difference between this bitmap and those in Figures 35
and 38 is that the contours are now semicircles of constant radial
frequency. This characteristic shape is that of the isotropic filter
function pr(w). Thus, the coding technique is taking full advantage

of the image filtering provided by H_(w). Several coded images

bp
are shown in Figure 47.

Now that we have a closed form expression for variance and
bit allocation it is possible to code any size transform we wish.
In particular, a 512x 512 image (which is analogous to a standard
TV image) may be coded. The results are shown in Figure 48.
As can be seen from Figure 48 bit rates on the order of 1/10
of that previously achieved can be obtained with this technique and
the degradation with decreasing rates is ''graceful.'"" A comparison
of the coded rates and their associated distortion with the curves
in Figure 26 indicates these results are consistent with the rate

distortion curves,

112




Figure 46.

Perceptual Power Spectrum Bitmap
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Figure 47,

Perceptual Power Spectrum Coded Images (N =
Upper left: Original

Upper right: 2 bits/pixel, NMSE = .08%
Lower left: 1 bit/pixel, NMSE = .18%

Lower right: .5 bit/pixel, NMSE = .42%

1
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Figure 48.

(c) (d)

Perceptual Power Spectrum Coded Images (N = 512)
a) Original

b) .5 bit/pixel, NMSE = . 28%

c) .35 bit/pixel, NMSE = , 50%

d) .1 bit/pixel, NMSE = ., 72%
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SECTION VI

COLOR CODING EXPERIMENTS

This chapter contains the results of several color coding
experiments. As in Section VI, the initial experiments involve
relatively standard techniques and are mainly for comparative
purposes. The last section contains results obtained with the

model of the HVS developed in Section II and illustrated in Figure

217.

7.1. Color Coordinate Transformations

It has been shown that transform coding in a color coordinate
space, such as the YIQ space, is preferable to coding in RGB
space [ 58 ). Indeed, Pratt has considered the color coordinate
transformation followed by a spatial transformation of each color
plane as a three-dimensional transformation [50 ]. The optimum
coding transfcrmation would be a three-dimensional KLT which
would completely decorrelate the 3N2 color-image components.

The computational complexity involved in such an approach has
been discussed previously, However, several color-coordinate
conversions provide a large amount of energy compaction and some

decorrelation and therefore approach the optimum KL expansion.
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We will use four of these conversions; YIQ, Lab, Faugeras (or
F-space), and Frei (or G-space). These color spaces were pre-
sented in Section 3.4. The color image which will be used for the ?
N =256 experiments is the Kodak color GIRL. Black and white
versions of the various color planes of this image are compared
in Figures 49, 50, and 51.

The energy content of the color planes in several coordinate
spaces was computed and the results are shown in Table 2.
In addition, the correlation between color planes was computed and
these results are shown in Table 3. The KL entry in Table 2
is from Pratt [ 58]. From Table 2 we see that the HVS model
which was developed in Section Il and is approximated by the Frei
model maximizes the energy compaction. The difference between
the cube root and logarithmic nonlinearities is minimal. For the
case of correlation, obviously KL is the best. As to which of the
others is second best is questionable. The YIQ conversion is
much lower between planes 1 and 2, however, the correlation

between planes 1 and 3 is higher than Lab or Gc . Although

ube

the correlation between planes 2 and 3 is lower for YIQ, this is

considered to be of secondary importance since the energy com-
paction indicates the bulk of the bits to be used in coding should
be allocated to plane 1. It should also be pointed out that the data

of Tables 2 and 3 were obtained without any spatial filtering.
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Figure 49. The 256 x 256 Color GIRL Image (Luminance

Planes)
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50. The 256 x 256 Color GIRL Image (First Chrominance
Planes)
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Figure 51. The 256 x 256 Color GIRL Image (Second Chrominance
Planes)
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Therefore, the tables represent the color coordinate conversion

characteristics only.

' 7.2. Block Cosine Transform Coding_

The block transform coding procedure used for color imagery

is an extension of the techniques outlined in Section 6.1 for mono-
chrome images., The process is similar to that of Pratt et al,
[50] and is as follows:

(1) Model the row and column variance matrices of RGB

as first-order Markov processes and compute the variances of the

elements of the color coordinate space to be coded.

(2) Spatially transform the color planes with the desired
transform, obtaining Tl' TZ' and T3.
(3) Model the probability density of the "DC'" term of T, as

1

a Rayleigh density and all cther terms as Gaussian densities with
variances as computed in step (1).
(4) Distribute the total number of bits between the color
planes by a ratio consistent with the energy packing and the optimum
.625/.275/.1 ratio for YIQ as determined by Pratt et al. [50 ].
(5) Assign a number of bits to each transform coefficient
according to the Pratt algorithm discussed in Section 6. 1.

All of the above steps are straightforward with the possible

exception of 4). The ratio .625/.275/.1 for YIQ was determined
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through a lengthy experimental process by Pratt, et. al. [ 50].

This ratio apparently does not change within a class of imagery

[ 50 ] Bit assignment based on total energy has been shown to be 1
an effective strategy, therefore, the YIQ ratio was adjusted to

.7/.2/.1 for the G and ch spaces and to .6/.25/.15 for Lab

be
space. The Faugeras space bits were distributed with the YIQ
ratio. It is recognized that this somewhat heuristic allocation of
bits is questionable, however it was not the intent of the present
work to investigate the bit allocation for this type of coding pro-
cedure., The YIQ ratio is optimal and an optimal ratio for each
of the other spaces could be determined by the lengthy process as
outlined in [ 50]. Although this would only have to be done once
for each class of imagery, it is still a serious disadvantage to
this type of coding.

The GIRL picture was coded following the above procedure
for 8x 8 and 16x 16 blocks at several bit rates. In this work when
we refer to a bit rate for a color image we mean the total average

rate per pixel. Thus, 1 bit/pixel for the Gy pe Coded image

be

implies .7 bits/pixel to the G _ -plane, .2 bits/pixel to the G -
- c

1 2

plane, and .1 bits/pixel to the GC3-pIane. Figure 52 contains the
1 bit/pixel results for the 16x 16 cosine coded YIQ, Lab, and
chbe spaces. To aid in judging the comparative quality of the

results, the three images are displayed in conjunction with the
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Figure 52. Cosine Coded 1 bit/pixel 16 x 16 Blocksize

Upper left: Original

Upper right: YIQ, NMSE: Red=.58%, Green=.98%, Blue=1.69%
Lower left: Lab, NMSE: Red=.49%, Green=.76%, Blue=1.03%
Lower right: chbe’ NMSE: Red=. 58%, Green=.79%, Blue=1.03%

Figure 53. Cosine Coded and Fourier Coded {1 bit/pixel 256 x 256
Blocksize)

Upper half: Cosine Coded
Left: YIQ, NMSE: Red=.42%, Green=.73%, Blue=1.25%
Right: chbe’ NMSE: Red=.36%, Green=.52%, Blue=.85%

Lower half: Fourier Coded
Left: YIQ, NMSE: Red=.42%, Green=.76%, Blue=1.59%
Right: G NMSE: Red=.39%, Green=,52%, Blue=.86%

cube’

125




-

Figure 52. Cosine Coded 1 bit/pixel 16 x 16 Blocksize

-

Figure 53. Cosine Coded and Fourier Coded (1 bit/pixel 256 x 256
Blocksize)
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original. This quadruplet was photographed and processed as an
entity and any differences between quadrants is a result of the
coding and not the reproduction process.

As can be seen, the coded images contain a large amount of
random colored noise. In addition, the blocking errors which were
noted in the biack and white block coding section are apparent in
the color images as well. These blocking errors are accompanied
by a large number of very low pixel values (i.e., ~0 on the 0 to
255 scale used for displaying). The source of this noise becomes
evident when viewing the black and white triplet of the coded YIQ
space as shown in Figure 53. The effect is worse for 8x 8 blocks
than 16x 16 blocks. A little reflection reveals the problem. For
bit rates of ~1 bit/pixel an 8x 8 block has 64 bits to distribute
throughout the 8x 8 cosine transform domain. Of these 64 bits,

8 to 12 are usually assigned to the DC term (depending on the
correlation used in the Markov model). This still leaves enough
bits to obtain low quantization errors in the important low fre-
quency and mid-frequency harmonics, as evidenced in Figures 33
and 34. When the average rate is reduced to .l bit/pixel, as in
the Q-plane coding for example, we are left with 6 bits for the
entire block.: This is not enough bits for the DC term alone,

For 16x 16 blocks the problem is not as acute since we would have

25 bits to distribute, but they would have to be allocated over 256
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Figure 54. Monochrome Display of YIQ Space
Cosine Coded 1 bit/pixel
8 x 8 Blocksize

Upper left: Original
Upper right: Y
Lower left: I
Lower right: Q
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coefficients. However, the higher harmonics grow less and less
important and zero bits assigned to these coefficients have little
affect on the coded image; thus, as the subpicture size grows the

problem becomes less significant.

7.3. Full Image Cosine Transform Coding

In the previous section it was noted that small block sizes
place a large burden on color coding because of the low number
of bits assigned to the chrominance planes. The best results we
could hope to achieve would be for the case of block size equal to
the image dimensions. A .1 bit/pixel allocation in the Q-plane
would give 6553 bits to be allocated. If we allocate 36 bits to the
single D.C. term only %% of the total bits have been used on DC
and this gives no DC error. In the previous section, for 8x 8
blocks, even if we allocated g_._ll bits to DC components we would
have a minimum error of .23% in the coded DC terms.

A 256x 256 block size was used to code the various color
planes as discussed in Section 7.2. The large block size was the
only variation in the coding procedure. As expected, the results
were better than for 8x8 or 16x 16 blocks. A large amount of
random colored noise was still present, however, the noise
associated with subpicture size was not present. This is evident

in the two coded images shown in the upper half of Figure 54
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7.4. Full Image Fourier Transform Coding

A full image Fourier coder was implemented as a step toward
the psychovisual coding to be discussed in Section 7.5. No signi-
ficant difference in the coding results was anticipated since the
Fourier and cosine transform both approach the optimum KL in
energy packing for N=256. Indeed, the black and white results
of Section 6.3 revealed no significant improvements over that of
Section 6.2, The total bit allocation between planes which was
specified in Section 7.2 was used. The major variation in the
coding procedure was brought about by the complex Fourier plane
and the symmetries which exist. The method used to assign bits
within a plane and to quantize the complex coefficients was that of
Section 6.3. Two coded images are shown in the lower half of
Figure 54. As anticipated, no significant improvement over the
cosine coder was noted. The slight differences which may be
seen between the two halves of Figure 54 are due to the different
color spaces and inter-plane bit assignments rather than intra-

plane bit assignment and type of spatial transform.

7.5. Perceptual Domain Power Spectrum Coding

In the previous sections one important problem which was
common to all of the coding accomplished was that of inter-plane

bit assignment. This problem can be handled easily through an
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extension of the black and white power spectrum coding discussed
in Section 6.7. In that section bits were assigned by equation
(127)  which contained a factor, Y, used to vary the bit rate,

For the color coding case we merely select Y for the desired total
rate and keep it constant for the coding of all three color planes.
Thus, the percentage of bits assigned between planes is determined
by the color power spectrum equations of Section 5.2.

From equations (95), (110), (117), (118), and (119) we have

2 1 2
Sz('”r) = 21.5 IHL(”r) (129)
a, +w
2 2
X B ety 2
Scl(wr) =l 2 7 B 7 2 chl(wr) (130)
a, +w a-+w
1 r 2 r
and
2
2| %9, 2°3°§ (131)
SCZ(wr) = O &t 2 2 ’ 2 2 ch ('”r)
a. +w Q. +w
1 r 3 r

Now for the imagery which has been used during this research

a, =~ G.Zz a3 , thus,

1

Sl(mr) ~ 21.5 -~ 3 IHl(mr) (132)




2 2a 2 2 2
Se)y) = 41 [—2—7] [°1+°.21|Hc1<'”r> 133
a +w
and
h 2 2a 2 7 2
; Scz(wr) ~ 6.27 [ =5 ][o1 +33] ch(ur) (134)
i a +w
2 . 2
But ol is c‘ and furthermore, for uncorrelated color planes
2 2 2 2 2 2
9 +oz = ocl and %9 +o3 =0 5" Thus,
2
2| %89,
Sz(wr) ~ 21.5 S Hz('ur) (135)
a +w
r
2| 2 °:1 2
Scl(wr) ~ 41 ST \Hcl('nr)] (136)
a +w
T
and
2
2a.0
2 cl 2
ScZ(wr) R O &7 2 |Hc2('ur) (137)
a +'Dr

The astute reader will have noticed that the delta function in
equation (95) has been dropped. This is justified by again, as
in Section 6.7, by not coding the w_ = 0 terms.

The method used to code in Section 6.7 is extended to color
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simply by using the appropriate equation for the G-plane being
coded and assigning bits by equation (127) with y constant for all
three planes. It should be noted that this process is only valid
for G-space since the power spectrum equations were developed
for the parameters in the G-space conversion. Coding in another
color coordinate system would require changes in equations (135)
thru (137)

The bit assignment equation was solved for Yy = 4x 103 and
variances as determined by equations (135) thru (137). The

bit distribution between planes was 1.3 bits/pixel for G .62 bits/

1’
pixel for G, and .0l bits/pixel for G,. The GIRL picture was
coded, with these computed variances and bit assignments, in the
perceptual domain. The resultant 256x 256 image was viewed side
by side with the original on a Comtal display. It was extremely
difficult to tell them apart. Some viewers had to have the minor
difference pointed out. The difference consisted of a slight low
spatial frequency tinge. This artifact was thought to be a result

of the extremely low bit rate in the G, plane. The G3 plane was

3
coded to .09 bits/pixel and used with the previous G1 and G2 coded
planes to obtain a color image with an overall bit rate of 2 bits/

pixel. The coded image was virtually indistinguishable from the

original. Several other bit rates (i.e., different Y's) were used.

Three of the resultant color images along with the original are
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shown in Figure 55. The results represent bandwidth compres-
sions of 12-1 to 45-1.

Just as for monochrome images, we would expect an im-
provement in this performance by increasing N to 512. This was
most certainly the case. The color Kodak GIRL was not available
in a 512x 512 scan so another image of the same class was
selected. The original of this image, ANN, is shown in Figure
56. This image was selected for two reasons, first the fine
detail in the design on the sweater would test the resolution
capabilities and second the large amount of pure white in the
collar of the blouse should bring out any random color noise. The
image was coded following the method detailed earlier with

¥ = 2% 104. The bit distribution was .75 bits/pixel for G w22

1’
bits/pixel for G,, and .03 bits per pixel for Gy The quality of
this coded image was so high that an experienced observer
mistook it for the original when viewing the image on the Comtal
display. The NMSE for this image was red=.13, green=.14,
and blue=., 38. In order to obtain an image which was degraded
enough to be apparent after reproduction several lower rates were
coded. The images shown in the lower half of Figure 56 were
coded at .5 and .25 bits/pixel.

To establish the utility of the coding technique, five more

512%x 512 color images were coded. These images represented a
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Figure 55. Perceptual Power Spectrum Coded (N = 256)

Upper left: Original

Upper right: 2 bits/pixel, NMSE: Red=.10%, Green=,18%, Blue=.70%
Lower left: 1 bit/pixel, NMSE: Red=.20%, Green=.33%, Blue=.84%
Lower right: .5 bit/pixel, NMSE: Red=.43%, Green=.66%, Blue=1.17%,

Figure 56 . Perceptual Power Spectrum Coded ANN Image (N = 512)

Upper left: Original

Upper right: 1 bit/pixel, NMSE: Red=.13%, Green=.14%, Blue=.38%
Lower left: ,5 bit/pixel, NMSE: Red=.18%, Green=.19%, Blue=.45%
Lower right:, 25 bit/pixel, NMSE: Red=.26%, Green=,27%, Blue=.56%




; A

Figure 56, Perceptual Power Spectrum Coded ANN Image (N = 512)
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wide variation in subject content. They were all coded at 1, .5,

and .25 bits/pixel. The originals and coded results are shown

in Figures 57 thru ©6l. The 1 and .5 bits/pixel versions of

these images were all coded with the same correlation and variance

parameters. They were computed from the ANN image. The .25

bits/pixel images were coded with the same correlation parameters

and bitmap; however, the normalization prior to Max quantizing

was performed with the spatial variance for the respective image.
A question of considerable interest is, where are the coding

errors manifested within the reconstructed image? This question

may be answered by computing a difference image. If one subtracts

a coded image from the original image and scales and displays

the result; the areas of maximum error become readily visible.

Three such images and the original are shown in Figure 62.

The colors in the difference image represent the errors in the

red, green, and blue planes. As in the achromatic case, the

chromatic coding results compare favorably with the predicted

performance (see Figure 31),




Upper left: Original

Upper right: 1 bit/pixel, NMSE: Red=.60%, Green=.58%, Blue=1,1%
Lower left: .5 bit/pixel, NMSE: Red=1.1%, Green=1.0%, Blue=1, 4%
Lower right: .25 bit/pixel, NMSE: Red=1.3%, Green=z1.6%, Blue=1.9%

Figure 57. Perceptual Power Spectrum Coded LAKE Image (N = 512)

Upper left: Original

Upper right: 1 bit/pixel, NMSE: Red=.17%, Green=,19%, Blue=. 36%
Lower left: .5 bit/pixel, NMSE: Red=.24%, Green=, 30%, Blue=., 38%
Lower right: .25 bit/pixel, NMSE: Red=.46%, Green=.57%, Blue=.,47%

Figure 58, Perceptual Power Spectrum Coded F16 Image (N = 512)




Figure 57. Perceptual Power Spectrum Coded LAKE Image (N = 512)

Figure 58. Perceptual Power Spectrum Coded F16 Image (N = 512)
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Upper left: Original

Upper right: 1 bit/pixel, NMSE: Red=,57%, Green=, 75%, Blue=1,2%
Lower left: .5 bit/pixel, NMSE: Red=1.0%, Green=1.4%, Blue=1,4%
Lower right: ., 25 bit/pixel, NMSE: Red=1.8%, Green=2.2%, Blue=2.0%

Figure 59. Perceptual Power Spectrum Coded BUILDING Image (N=512)

Upper left: Original

Upper right: 1 bit/pixel, NMSE: Red=1.5%, Green=2.0%, Blue=3.2%
Lower left: .5 bit/pixel, NMSE: Red=1.9%, Green=2. 7%, Blue=3.7%
Lower right: .25 bit/pixel, NMSE: Red=2. 3%, Green=3.4%, Blue=4.3%

Figure 60. Perceptual Power Spectrum Coded BABOON Image (N=512)

140




=

Figure 60.

(N = 512)

Perceptual Power Spectrum
(N = 512)

141

Coded BABOON Image




Upper left: Original

Upper right: 1 bit/pixel, NMSE: Red=.55%, Green=,44%, Blue=1.8%
Lower left: .5 bit/pixel, NMSE: Red=1,1%, Green=,77%, Blue=1.9%
Lower right: .25 bit/pixel, NMSX: Red=,90%, Green=1, 1%, Blue=2. 3%

Figure 61, Perceptual Power Spec i Coded PEPPERS Image (N=512)

Figure 62. Difference Images from ANN Coding Results
(See Figure 56 )
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Figure 61. Perceptual Power Spectrum Coded PEPPERS Image
(N = 512)
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Figure 62. Difference Images from ANN Coding Results
(See Figure 506

143




SECTION Vi1

IMAGE QUALITY MEASURES

A major problem which has plagued image processing has
been the lack of an image quality measure which matches human
subjective evaluation. Although several measures have been pro-
posed and used, they usually suffer from one of two defects. They
are either analytically non-tractable or they perform poorly against
subjective evaluations. The next section contains a discussion of
several quality measures which have been used. In Section 8.2
an image quality measure based on our model of the HVS is pre-
sented. A psychophysical paradigm, which was used to obtain
subjective evaluations of two data bases (one monochrome and one
color), will be described in Section 8.3. Then, in the last
section, several image quality measures are compared to the

subjective evaluation of the data bases.

8.1. Standard Image Quality Measures

One of the most commonly used quality or distortion mea-
sures is mean square error (MSE). For the case of an Nx N

discrete image, MSE may be defined as
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N N
MSE = 2 2 [f(m,n) - g(m,n)]2 (138)

m=1n=1

This particular distortion measure is attractive because it is
tractable and a solution to the parametric rate distortion equations
can be found for it. Unfortunately, MSE does not match human
evaluation on many types of imagery. It is also possibleto define a
measure based on MSE and energy normalization [27 ]. We will
call this measure normalized mean square error (NMSE), and for

an Nx N image,

]2

Mz

N
m=1
NMSE = (139)

2
[f(m, n)]
1 n=1

[f(m,n) - E(m, n)

o
[

3 Mz

Normalized mean square error performs somewhat better than

MSE. It retains the analytic tractability and is easy to compute.

For these reasons it has gained acceptance in some circles and
therefore it has been used throughout the earlier chapters of this
dissertation. It should be noted that NMSE can also be defined in

the Fourier domain (FMSE) as,
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|F(m. n) - F(m,n) |

Mz

>

m=1

e
"
[

FMSE = (140)

N
Y |F(m,n|°

1 n=1

Mz

where N is the width and length of the original image and M=N/2+1
(recall the complex conjugate symmetry of the Fourier domain).
Another common measure is the normalized difference or

normalized error (NE),

N N
Z 2 |£(m, n) - f(m,n)]

m=1 n=1

N N

3 5 |£(m, n)|

m=1 n=1

NE (141)

This measure is particularly appealing because of its simplicity.
The measure performs well for low intensity levels since incre-
mental changes at low intensities are more noticeable than those
at high intensities [ 29, p. 138]. The NE measure is not as easily
manipulated as NMSE and for this reason it is not as popular as
the latter.

Many attempts at defining image quality measures are based
on some known property of the human visual system. One such

measure, Laplacian mean square error (LMSE), is based upon the

importance of edges to the human observer. This measure is
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defined as [27 1.

N-1

2

2

Z
'

A 2
[G(m, n) - G(m, n)]

"M
i
[aV]

LMSE =

= (142)

2 [G(m.n)]'2

2 n=72

Z

@ M

where

G(m,n) = f(m+l,n) + f(n-1,n) + f(m, n+l)

+ f(m, n-1) - 4f(m, n) (143)

LMSE performs well for images which have been severely low-pass
filtered. However, it is possible to generate severely degraded
images with low spatial frequency noise which are measured ""good”
quality by LMSE. From equations (142) and (143) it can be

seen that LMSE is not very tractable.

A similar measure can be obtained by retaining equation

(142)  and changing equation (143) to

G (m,n) lf(m+1 n-1) + 2f(m+1,n) + f(m+1,n+1)
- f(m-1,n-1) - 2f(m-1,n) - f(m-1,n+1)|
+ |f(m-1,n+l) + 2f(m, n+l) + £f(m+1, ntl)

- f(m-1,n-1) -2f(m,n-1) - f(m+1,n-1)|

(144)
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When G(m,n) in equation (142) is replaced by G,(m,n) we have a
form of estimated gradient mean square error (GMSE). The
function Gs(m, n) is a Sobel operator defined on a 3x 3 grid [ 60,
PP. 271-272]. This measure produces some formidable analytic

problems.

8.2. A Perceptual Image Quality Measure

The observant reader has no doubt noticed that GMSE and
LMSE are simply NMSE computed in a transformed space. This
approach to obtaining image quality measures is widely used
since the actual distortion measure is based on mean square error
and one merely selects an appropriate preprocessor., What better

preprccessor could be selected than the HVS model we have

developed? For the achromatic model depicted in Figure 21 we

can define an achromatic perceptual mean square error (PMSEa) as

N N 2
[z(m, n) - 2(m, n)]

PMSEa = (145)

where z(m,n) and %Z(m,n) are given by

z(m,n) = 4n(x(m,n)] ® hbp(m, n)
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and
z(m,n) = in[X(m,n)] ® hbp(m' n) (146)

The function hbp(m, n) is simply the rectangular coordinate form of
the point spread function equivalent of equation (93). This
error criterion can also be defined in the Fourier domain and in
this case we have

N N .
2 Z [Z(m, n) - Z(m,n)]2
n=

m=1 1
FPMSEa = (147)

N

2
Z [Z(m, n)]
=1 1

B Mz

7

where

Z(m,n) = J{4n[x(m,n)]} - pr(m, n)

i(m, n) = J{4n[%X(m,n)]} - pr(m, n) (148)

It should be evident that equations (145) and (147) are equivalent

and therefore we will use the term achromatic perceptual mean

square error for either case,

In a similar fashion, it is possible to define a chromatic

perceptual mean square error (PMSEC). In this case we simply
compute the NMSE in the g, <y and <, planes (see Figure 27 ).

Hence
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PMSEC = NMSE  + NMSECI + NMSECZ (149)

L
where
N N ; .
Z Z [£(m,n) - £(m,n)]
m=1 n=1
NMSE‘ = N N .
z Z [£(m, n)]
m=1 n=1
N N 2
2 2 (¢)(m,n) - & (m,n)]
m=1m=1
NMSEcl = N N
2
Z Z (¢, (m, n)]
m=lm=1
N N = 2
Z E [cz(m,n) - cz(m, n)]
m=1 n=1
NMSE_, = p— (150)
2
Z Z [c,(m,n)]
m=1] n=1

The three expressions in equation (150) also have Fourier domain

-

equivalents, Thus, the color counterparts of equation (148)

become
L{m,n) = Zl.SJ{Ln[tl(m,n)]} Hz(m, n) (151)
C,(m,n) = 41 7{n[ty(m,n)/t (m,n)]} H_ (m,n) (152)
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and
Cz(m. n) = 6.27 J[zn[tB(m, n)/tl(m, n)]} ch(m. n) (153)

Of course, the coded versions I:(m. n), él(m, n), and éz(m, n) are
similarly defined. The quantities tl(m,n), tz(m, n), and t3(m, n)
are obtained from the RGB to T-space conversion defined by

equation (23)

8.3. An Achromatic Subjective Image Quality Experiment

The ultimate image quality measure is a subjective evaluation.
This type of measure is not without ''pitfalls,' Indeed, what is an
important difference to one observer may go unnoticed by another.
A reliable experimental result requires a large number of subjects
of a 'judicious'" mix. They should be selected with the overall
objective in mind. For example, to evaluate normal image viewing
quality the observers should have a wide mix of background and
experience. On the other hand, if one is developing a specialized
image measure such as a texture measure, the observers should
probably be familiar with this area. Since we are concerned with
viewing quality, we will attempt to use unbiased observers with
various backgrounds.

Another problem which is encountered is that of selecting the

actual evaluation procedure. There are two general types of
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subjective evaluation. In one, absolute evaluation, observers are
shown an image and asked to rate it according to some pre-defined
scale, The other, comparative evaluation, simply requires the

observer to rank a set of images from best to worse. Extensive

|
A g 2t et S St ..«J

work has been done in the methods for scaling images, or the

absolute evaluation method, particularly in evaluating televicgion

quality [61]. The rank ordering type of evaluation is more suitable
to digital image processing and it is a fairly quick and easy test
to perform. An additional favorable aspect is that it requires no

training or familiarization tasks, The observers can be completely

""naive'" in this respect.

A convenient implementation of the comparative evaluation
involves a type of ''bubble sort.'" This method requires the
observer to make a forced choice between two images. The
chosen or best image is always retained for the next comparison
until the set of images has been exhausted. The remaining image
is ranked one and removed from the set, The procedure is re-
peated to find the second ranked image, etc., down to the NEh
ranked image. This particular protocol has been used successfully
by Mannos and Sakrison [7] and it is th: evaluation technique
selected for our experiments.

The monochrome data set was obtained by coding the 256 x 256

low noise scan of the GIRL picture. The image was coded to 2,
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1.0, .75, and .5 bits/pixel with an 8x 8 and a l6x 16 block cosine
coder. In addition, it was coded to 1, .5, .25, and .1 bits/pixel
with the perceptual power spectrum coder. The twelve images
were stored in digital form on a high speed disk. The images
were displayed in pairs, diagonally opposite (i.e., quadrants 2 and
4), on a Comtal monitor. A PDP-11/40 was used to control the
disk and accomplish transfer between the disk and monitor. The
images were transferred sequentially to either quadrant. This
enabled the rejected image (the worst image of a pair) to be re-
placed by the next image in the set. With this arrangement 66
pairings were required to order the entire set of 12 images.

The observer was seated in front of the monitor at a dis-
tance which gave a 6° viewing angle for a 256x 256 image. This !
distance was selected to be consistent with the scaling factor which

was used in the filter equations of the HVS processed images.

The lighting within the viewing room was subdued and the average
2
brightness of the display was approximately 15mL or 48 cd/m .

After all of the individual rankings were obtained an overall

ranking for the group of observers was obtained by a weighted

average. This average was defined by |

M
=1

j
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where M is the number of trials, Ri is the weighted average rank
S : " _th .
of the i— image, and nij is the rank assigned to the i— image
t
during the j—h- trial, Table 4 contains the final rankings for the

achromatic data set.

8.4, A Chromatic Subjective Image Quality Experiment

The general methods outlined in the previous section were

used to subjectively evaluate a set ten color images. In this case

30 256x 256 image files were required. The color data set con-
r tained only ten images since the high speed disk could not store
L. 12 color images. Since three times as much data was required

for a complete image, the time required to display an image and

the total time required to evaluate the entire data set was
lengthened considerably.

The color image used for coding was the 256 x 256 color
GIRL. The image was coded in the YIQ and Lab spaces with a
block cosine coder. For the YIQ conversion, a 16x 16 blocksize
and rates of 2, 1, and .5 bits/pixel were used during coding. An
8x 8 blocksize coder at the same rates was used to code the Lab-

space. The image was also coded with the perceptual power

spectrum coder at rates of 2, 1, .5, and .25 bits/pixel.
The above set of ten color images was subjectively evaluated

by observers and the results were averaged by using equation
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TABLE 4

SUBJECTIVE RANKINGS FOR ACHROMATIC IMAGE SET

Image Blocksize Rate (bits) Subjective Rank
1 16 2 3
2 16 1 5
3 16 . 15 7
4 16 .50 10
5 8 2 1
6 8 1 6
% 8 + 15 i 8
8 8 .50 ’ 11
9 256 1 | 2

10 256 .50 4
11 256 &5 9
12 256 .10 12
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(154). These average rankings are tabulated in Table 5.

8.5. Computed Image Quality Experiement

The two image data sets generated for the experiments of
Sections 8.3 and 8.4 were ranked by the error between each of
them and the original image, Minimum error was ranked one,
second smallest two etc., until the largest error was ranked
twelfth. The monochromatic error computations were performed
with the equations defining PMSE_ -- equations (145)  and (146).

For the color images the equations

(155)
NMSEc NMSER + NMSE _ + NMSI:'ZB

G

and

LMSEC

1

156
LMSER + LMSEG + LMSEB ( )

along with equation (149) for PMSE_ were used to rank the data
set,

The results of these computations are shown in Tables 6
and 7. The subjective ranks have been included for comparative
purposes, From Table 6, the correlation between PMSE and the
subjective ranking of the achromatic image set is higher than that
of NMSE and LMSE. For a data set size of 12 the confidence level

of the correlations is greater than 99.9%. Thus, the PMSE is

definitely the better distortion measure for this data set., It should
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TABLE 5

SUBJECTIVE RANKINGS FOR CHROMATIC IMAGE SET

Image Blocksize Color Space Rate (bits) Subjective Rank

1 256 Gcube 2,00 1

2 256 Gcube 1,00 2

3 256 Gcube . 50 6

4 256 Gcube . 25 9

5 16 YIQ 2,00 4

6 16 YIQ 1,00 5

7 16 YIQ «50 10

8 8 Lab 2,00 3

; 9 8 Lab 1,00 7
10 8 Lab « 50 8
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TABLE 6

COMPUTED AND SUBJECTIVE RANKINGS FOR
ACHROMATIC IMAGE SET

Image NMSE (%) | LMSE (%) |PMSE (%) Subje(céti;{e)Rank

1 s 2T 60 3.2 . 3'
2 .43 81 5.4 5
3 .51 89 6.1 7
4 .67 100 7.8 10
5 .28 64 3.0 1
6 .43 89 4,6 6
7 -1 100 6.1 8
8 «33 133 8.6 11
9 .26 75 1.2 2
10 .42 85 2.5 4
11 ST 93 50 9
12 1.55 99 9.1 12

Correlation

to S.R. .85 .84 .92
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be noted that this test was a severe one in the sense that three
types of noise were contained in the images; Gaussian, 8x 8
blocking errors, and 16x 16 blocking errors. To the author's
knowledge, comparable tests have not been performed. Previous
subjective tests have dealt with a single type of noise (usually
Gaussian).

The correlation results from the chromatic experiment are
not as clear-cut as the achromatic case. The NMSE correlation to
subjective rank is slightly higher than PMSE correlation to sub-
jective rank (see Table 7 ). LMSE is definitely inferior to NMSE
and PMSE. Four types of correlation were computed on the
chromatic data set. The first was the standard correlation co-
efficient defined as the covariance divided by the product of the

standard deviations,

©
5 & el (157)
Xy cxoy

where x was the vector of actual errors measured and y was the
subjective rank vector. Ranks were also assigned to the images
according to minimum error under each measure. Equation (157)
was then used to compute the correlations between rank orderings.
The last two measures have been specifically developed for ''ranked"

data. The Spearman rank correlation coefficient is defined as
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TABLE 7

COMPUTED AND SUBJECTIVE RANKINGS FOR
CHROMATIC IMAGE SET

NMSE LMSE PMSE Subjective
Image Rank
Percent Rank |Percent Rank|Percent Rank (S.R.)
1 1.00 1 211 1 11.02 1 1
2 1.37 2 250 2 13. 64 2 2
3 2.19 5 279 3 19. 85 4 6
4 3.82 9 292 5 29.44 9 9
5 2,13 4 302 6 20. 40 5 4
6 3.32 7 403 8 27.45 7 5
7 5,26 10 562 10 40. 37 10 10
8 1.67 3 280 4 17.08 3 3
9 2. 62 6 342 i 21,93 6 74
10 3,74 8 410 9 27.93 8 8
Correlation
to S.R. .92 .96 .74 .76 .90 .94
Spearman
Rank
Correlation .96 .76 .94
Kendall Tau
Coefficient .91 A . 87
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1

5 (158)
N(N“ - 1)

where the Di are pairwise differences and N is the number of
ranked images [62 , PP- 245-249]. The Kendall tau coefficient or
r statistic is defined as [62 , pp. 249-252]

oy (number of agreements) - (number of disagreements)
K~ total number of pairs

(159)
The four types of correlation were computed on the chromatic
results and they are tabulated in Table 7. It should be noted
that the chromatic experiment was even more difficult than the
achromatic experiment since three different color spaces were

used in obtaining the image set.
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SECTION IX

SUMMARY AND CONCLUSIONS

The primary thesis of this research was that models suitable
for digital image processing -- and in particular color image band-
width compression -- could be developed from the basic characteris-
tics of the human visual system. This hypothesis has been demon-
strated and the theoretical and practical implications are summa-
rized in the next section. The conclusions which can be drawn
from the results of this work are also discussed in Section 9.1.

In the last section several recommended areas for future research

are pointed out.

9.1 Summary and Conclusions

It has been demonstrated that simple mathematical models
can be developed from the physiological and psychophysical traits
of the HVS, These models were shown to be analytically tractable
and expressions for their statistical characterization were obtained.
Given a standard image model, the output power spectrum of an
achromatic and a chromatic model were derived., These power
spectrum expressions were used to code black and white and color

magery down to rates lower than that previously achieved. In
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addition, the outputs of the models were shown to be statistically
compatible with the basic assumptions necessary to obtain a solution
for the parametric rate distortion equations. Those equations were
solved and rate versus distortion curves which demonstrate the

near optimality of the coding algorithm were presented.

The utility of these models as a preprocessor for image qua-
lity measurements was also demonstrated. [t was shown that nor-
malized mean square error is an effective distortion measure when
applied to the preprocessed images. The combination of NMSE and
the HVS preprocessor was referred to as perceptual mean square
error (PMSE). A subjective evaluation of twelve monochrome and

ten color images indicated that PMSE is a valid image quality

measure.

One can conclude from this work that what has been conjec-
tured previously is true. The HVS can be used to develop very
effective preprocessors for image systems. Moreover, with a few
simplifying assumptions, these models can be analyzed and efficient
algorithms for image bandwidth compression and quality measure-

ment can be obtained.

9.2 Recommended Future Work

Several areas which may be fruitful future research topics are

apparent. One area of practical importance would be the application
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of the techniques used to obtain the power spectrum equations for
our HVS model to the YIQ and Lab color-coordinate spaces. If the
analogous expressions are obtained, particularly for Lab space,
bandwidth compressions similar to those obtained in this work
should be possible.

Another area along these lines is to use the power spectrum 4
equations tc code in the cosine domain. It is realized that the co-
sine domain i8 not a true frequency plane per se; however, there
is reason to believe this approach would prove fruitful. A key in-
gredient of the successful coding in this dissertation has been the
circularly symmetric bitmaps and this symmetry can be produced
in any frequency or sequency domain with the appropriate ''power
spectrum'' equation.

The basic algorithm can also be simplified by eliminating the
filtering operation. Since the spatial filter is an integral part of
the power spectrum expression and bit allocation is determined from
this expression, a type of filtering is being performed in the quanti-
zation process, Of course, with the cosine transform, this would
give a very simple algorithm with definite real time processing
capabilities. The next step would be to study the block size pro-

blem. It could very well be that a 16x 16 or 32x 32 block cosine

coder can be implemented with the power spectrum bit assignment

technique,
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One very obvious area for further work is that of image
quality measures, The subjective experiments performed during
this research were very superficial. The results were certainly
encouraging; however, many more images from several classes
need to be processed before any definitive comparisons between
PMSE, NMSE, GMSE, LMSE, or any other image quality measure-

ment can be made,
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APPENDIX A

SOME PHYSIOLOGICAL PROPERTIES OF THE

HUMAN VISUAL SYSTEM

As pointed out in Sectionl = 3 primary goal of this research
is to obtain quantifiable mathematical models of the HVS which are
applicable to image coding, To work toward this end we must have
some basic knowledge of the physiology of the HVS. The HVS
models of Section II were developed based on the physiological
properties discussed in this appendix. Before beginning let us
consider what we mean by the human visual system. Throughout
this research we will consider the eye, the optic tract, the lateral
geniculate bodies and those portions of the striate (or visual) cortex
which do not involve cognition to be the HVS.

A horizontal section of a right eye is shown in Figure A.1l.
Light enters through the cornea and passes through the anterior
chamber to the iris-lens structure. Upon exiting the lens, the light
travels through the vitreous humor to the retina where it excites
the photoreceptors which in turn convert these visible electro-
magnetic radiations to a type of frequency modulated signal. This
electrical activity is passed via the optic nerve, through the optic

chiasm to the lateral geniculate bodies (LGBs). From the LGB,
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Figure A.1 Horizontal Section of Human Eye

Figure A.2 Rayleigh Limit Diagram
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the visual data passes to the occipital lobe region of the brain i
which contains the visual cortex. Through this pathway the original
visual field of view is transmitted and mapped conformally onto

area 17 of the striate cortex. Let us now consider Figure A.1l in

detail,

A.l. The Ocular Optical System

The outer coat of the eye, the sclera, is protective in func-
tion [63 ]. The sclera (sometimes referred to as the "white'' of
the eye) is opaque except for the cornea, which is a transparent
protuberance centered on the optical axis. The cornea has a re-
fractive index of approximately 1.3771 and the aqueous humor (con-
tained in the anterior chamber) has a refractive index of 1.3374
[ 22, p. 210]. The air-cornea-aqueous humor interface results in
3 a lens power of 42 diopters which is approximately 2/3 of the total
power of the eye. The remaining 1/3 is a result of the ""crystal-

line" lens which has a refractive index of 1.42 [ibid]. Since the

refractive index of the vitreous humor is !.336 the differential index
in the aqueous humor-lens-vitreous humor interface is lower than
that of the corneal interfaces, hence a lower power. The crystal-

line lens is the most important element in the lens system however,

This is because it is nonrigid and the shape and relative curvature

of the two faces can be altered by the ciliary muscles. This action,
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called accommodation, insures that the image is brought into focus
at the retina, regardless of the distance of the object from the eye.

The image which is finally formed on the retina is inverted (an up-

side down mirror image).

The process described in the previous paragraph produces a
focused image on the retina, however, it does not control the inten-
sity of this image. This is accomplished by a circular opening,
the pupil, which is formed by the iris. The iris can adjust the
diameter of the pupil from 2Zmm to 8mm (or an area variation of
16 to 1), thus, controlling the amount of light passing from the
anterior chamber, through the lens, and into the vitreous chamber.
The pigmented epithelium adjacent to the radial and circular mus-
cles of the iris gives the eye its characteristic color (blue, green,
or brown). Since aberrations in the dioptric system are the
greatest in the periphery of the cornea and lens, pupillary con-
striction improves the quality of the image formed on the retina.

Unfortunately, this action also decreases the resolution of the opti-

cal system through diffraction effects.
The resolving capability of any incoherent optical instrument

is limited ultimately by the effects of diffraction [64 , pp. 129-131].

The Rayleigh criterion of resolution states that two incoherent point
sources are ''barely resolved' by a diffraction-limited system when

the bright central core of one Airy disk falls on the first dark
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band of the other. This geometry is shown in Figure A.2 for a
one-dimensional case. The minimum resolvable separation of the

two point sources becomes

§ = 1.22 -~ (A, 1)
d0

where A is the wavelength of the sources and d0 is the diameter of
the image-forming lens (i.e., the pupil diameter).

Riggs [ 65, pp. 333-334] has shown that visual acuity remains
fairly constant as the pupil increases from 2.5mm to 5mm. This
result indicates that within this range, the Rayleigh limit and optical
aberration effects are balanced. The visual acuity of the total sys-
tem involves other parameters however. We will revisit this sub-
ject in more detail later.

There is one type of aberration in the optical system of the
eye which is measurable on axis, chromatic aberration., Since the
refractive indexes of the ocular media are wavelength dependent,
the optical power of the eye exhibits this dependence., If the image
of a distant point source emitting all wavelengths is located on the
optic axis and produces a focused image on the retina for a re-
ference wavelength )\0, then shorter wavelengths will image in front
of the retina and longer wavelengths behind the retina., If the re-

ference, )\ is set at the peak sensitivity wavelength for color

ol

sensitive photoreceptors (~578nm, a yellow), then variation in optic
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power ranges from +, 62 diopters for 750nm (red) to -2.63 diopters

for 365nm (violet) [ 22, pp. 211-212]. As can be seen, the blue

end of the spectrum has the largest variance in lens power. This
implies there is more '‘defocus' for the blue end of the spectrum
and hence less resolution.

In the previous paragraphs of this section we have briefly
covered the optical system of the eye. This system is linear and,
even though it is spatially and temporally variant and inhomogeneous,
one can model the system quite accurately [ 1, p. 162], [ 66].

In the next element of the ocular system, the retina, we not only
encounter complex inhomogeneities and interconnectivity patterns,

but nonlinearities as well.

A.2 The Retina

The retina is a multi-layered structure which lines the in-
terior of the rear wall of the eyeball. It extends about 100° on
either side of the optic axis. The photoreceptors are located at
the very back side of the retina. This means that light must pass
through the optic nerve fibers, and other neural layers of the re-
tina, before reaching the photoreceptors. This type of structure
is referred to as an inverted eye. Figure A.3 illustrates the basic
structure of the retina, The chorioid layer and pigment cells ab-

sorb any light which has passed through the entire system and has
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Periphery Fovea

Number of rods or cones in an area 0.0069 sq mm

Figure A.3 Structure of the Human Retina

Light

———Ganglion Cells
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44— Bipolar Cells
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4—Pigment Cells
«¢——Choroid

Degrees from the fovea

Figure A.4 Distribution of Rods and Cones
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not been absorbed by the photoreceptors. This action minimizes
stimulation of the receptors by stray or reflected light which would
reduce the resolution and contrast sensitivity of the system.

The outermost neural layer of the retina contains the photo-
receptors. The receptors (thin rod- or cone-shaped structures)
are arranged with their light sensitive ends pointing away from the
lens. The next neural layer contains the bipolar cells. These cells
make contact with the receptors through the bipolar cell dendrites.
The bipolar axons synapse with the ganglion cells which form the
inner neuronal layer of the retina. The axons of the ganglion cells
are gathered into the optic nerve at the optic disk which is located
about 16° nasally from the optic axis. In this area there are no
photoreceptors and a ''blind-spot'' results in the visual field located
16° temporally from the optic axis. In addition to the sequential
or vertical structure just described there are two lateral systems
of neurons. The horizontal cells form interconnections between re-
ceptor cells. The amacrine cells synapse with each other, with
ganglion cells and with proximal ends of bipolar cells.

Figure A.3 illustrates two separate areas of the retina. One
area is a rod free area. Note that within this area the correspon-
dence between receptors, bipolar, and ganglion cells is one-to-one.
The rod free area of the retina is a circular area of 500-600u in

diameter centered on the optic axis. This area is called the fovea
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centralis and it subtends 1,7° to 2.0° of the visual field. There
are 110,000 to 115,000 cones within this area. A smaller portion,
the foveola (the inner 400y diameter circle) is the most densely
packed area and contains about 25,000 receptors. Outside the fovea
centralis cone density begins to fall off rapidly and rod density be-
gins to build up. A density profile for rods and cones and a rela-
tive acuity curve are shown in Figure A.4. There are approxi-
mately 6.5 million cones and 125 million rods in the retina, The
optic nerve contains about 1 million ganglion axons. There is a
one-to-one interconnectivity between ~100, 000 of these ganglion cells
and the cones in the fovea centralis. As a result, a 145 to 1 data
reduction process must take place in connecting the remaining 131
million receptor outputs to 900, 000 optic nerve channels, Thus,
the relative acuity curve shown in Figure A.4 is a function of re-
ceptor density and interconnectivity (neural summation). Kabrisky

[ 67, p. 18] has likened this arrangement to looking through a piece
of frosted glass with a transparent spot in the center. We are not
cognizant of the loss in acuity since the clear spot is always cen-
tered on where we are looking. If we consider the center-to-center
spacing between cones in the fovea centralis (2 to 2.3u), the cor-
responding subtended angle is 25 to 29 seconds. This is equivalent
to approximately 60 cycles/degree subtended. As indicated pre-

viously, pupil diameters of 2.5mm to 5mm maintain relatively
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constant acuity. Campbell and Gubisch [ 68] have shown that the

optics of the eye produces the best image for a pupil diameter of
2.4mm. A recent paper by Synder and Miller [69 | demonstrates
that the theoretical optimum receptor packing with a 2.4mm pupil
gives an angular spacing of 27.4 seconds; hence, the system appears
to be consistent. Thus far we have considered only the basic ana-
tomical arrangement of the photoreceptors within the retina. We
will now discuss the functional relationships of these receptors.

The two types of receptors differ by more than their physical
shape and size. The rods contain a purple pigment, rhodopsin,
which has a peak spectral absorption at 505nm (within the green
spectrum). When green light is absorbed several chemical reactions
take place which convert the rhodopsin to retinene and a protein
called scotopsin. If enough light is absorbed the retinene is further
bleached to colorless vitamin A. Rhodopsin is continuously resyn-
thesized from scotopsin and vitamin A or retinene. In complete
darkness all of the scotopsin may be converted back to rhodopsin.

Proteins similar to scotopsin, photopsins, are found in cones.
The cone pigments which produce photopsins are probably of three
types. These pigments appear to absorb light maximally at 440nm,
535nm, and 565nm [ 70 , p. 330]. The actual pigments and pro-
teins have yet to be completely isolated from the human retina.

The spectral sensitivity curves shown in Figure A.5 were obtained
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with reflection densitometry measurements on single receptors from
excised human retinas [ 70 , p, 332],

It seems clear that cones are important for color vision, and
indeed, color sensitivity falls off outside the fovea where cone den-
sity is decreasing. However, the rods, when adapted to the dark
so that large concentrations of rhodopsin are presen:, are much
more sensitive to white light than cones. Thus, in dim light our

! vision is primarily dependent on rods and, as a result, colors

appear as shades of gray. This type of vision is referred to as

-t A —c——

scotopic, or dark vision. When the light intensity is higher (as in

daylight) the rhodopsin of the rods is almost entirely bleached out,

thereby rendering the rods ineffective, making daylight (or photopic),
vision a cone miechanism. If the spectral sensitivity curves for the
dark adapted and daylight adapted eye are measured, one obtains
curves similar to Figure A.6 [ 17 , p, 146]. Note how the scoto-
pic (rod) curve peaks at about 505nm versus 555nm for the photopic
(cone) curve. This shift in the position of the peak is referred to
as the Purkinje shift.

The preceding may be summed up as follows. The retina is
not a light sensitive transducer of constant properties. It contains
two receptors: the day receptor, which involves the whole surface
of the retina and functions at high luminous levels with a spectral

sensitivity defined by the photopic curve shown in Figure A.6; and
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the night receptor, which functions when the eye is dark adapted
and is characterized by the scotopic curve in Figure A.6. The
rods (night receptors) are almost completely absent from the fovea
region where the cone (day receptor) density is highest. The cones
appear to be totally responsible for color vision. This duality of
the retina is sometimes referred to as the duplicity theory [ 71 ,
p. 387].

The minimum threshold for the rods appears to be one quan-
tum of light whereas for the cones it is four or five quanta. Once
the minimum threshold is exceeded the chemical processes pre-
viously mentioned take place. By some unknown mechanism the ab-
sorption of light and resultant chemical reaction produces an
electrical response in the receptors that is transmitted to the bipolar
cells. Unfortunately, it is not possible to monitor these signals at this
point. The individual functions of the neuronal layers of the retina
can only be conjectured. It is known that there is a nonlinear
functional relationship between the nerve impulse output at the
ganglion axons and the impinging light [ 1, p. 163]. The functional
form of this nonlinearity remains an issue [72]-(75] and (347,
debate centers on whether the functional form of the nonlinearity
is logarithmic or a power law. The exponent range in the power
law argument is usually .29 to .35 or approximately cube root.

These two forms are nearly equal over a 1 to 100 range and the
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logarithm is bound by the .29 and .33 curves out to about 600.

In fact the difference between the ,29 power curve and the logarithm
curve at 1000 is less than 7% (see Figure A.7). The problem with
this comparison is, '"how should the data be scaled?'" If one uses
quanta of light to measure intensity then obviously we would be well
beyond the range of close agreement. If we use trolands as our
unit of measure (1 troland = 1 cc:l/rn2 illuminating a 1mm2 pupil
area), then we are within the 1 to 100 range for most experimental
data.

One of the primary results of the nonlinearity (regardless of
the exact functional form) is the compression of the dynamic range
of the input intensity. This results in a system which can handle
light intensities over a range of 10 billion. Compared to the 16 to
1 area variation in pupil size we see that the main intensity com-
pensation mechanism occurs in the photoreceptors. In fact, the
pupilary response is transient in nature, always returning to approx-
imately the same size after the photoreceptors have '‘adapted" to

the change in illumination.

A.3., The Lateral Geniculate Bodies

The ''coded" visual information exits the retina by propagating
down the ganglion axons (the optic nerve) to the optic chiasm. At

this point the optic nerves from both eyes decussate and the signals
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from the left half of the retina (w.r.t. optic axis) of both eyes pro-

ceed to the left lateral geniculate body (LGB). Similarly, the right
half of the retina of both eyes provides signals to the right LGB.
Since the retinae are stimulated by inverted images of the visual
field, the left field maps to the right LGB and vice versa.

Until recently, the function of the LGB's was thought to be of
minor consequence to the actual processing of the visual image it-
self. A common argument was that the input axon count and output
axon count from the LGB to the primary visual cortex was essen-
tially the same and therefore little processing of data was occurring
in the lateral geniculates [ 67, p. 25]. DeValois et al., have re-
cently studied color contrast effects in the LGB of the monkey [76].
Their results indicate the presence of several types of cells within
the LGB which receive the basic tristimulus spectral outputs of the
photoreceptors and produce compound signals. They found spectrally
nonopponent cells which respond to all wavelengths with either an
increase or a decrease in firing rate and spectrally opponent cells
which respond with an increase in firing rate to some areas of the
spectrum and a decrease to other areas. Four types of opponent
cells were found: red excitatory and green inhibitory (+ R -G),
green excitatory and red inhibitory (+ G-R), yellow excitatory
and blue inhibitory (+Y -B), and blue excitatory and yellow inhibitory

(+B-Y). The nonopponent cells appear to transmit brightness
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information, whereas the opponent cells code the color information.

A.4. The Visual Cortex

The visual signals proceed from the LGB's to area 17 of the
striate cortex which is located in the occipital lobe areas of the
brain. The data appears to map conformally onto area 17. In-

vestigation of the spectral sensitivity at this point indicates that the

observed color opponent interaction is established at earlier levels
of visual processing [77]. This finding indicates the spectral
processing is occuring almost entirely within -- or prior to -- the
LGB's. Several other neurological investigations of the primary
visual cortex have been made which relate to the spatial content of

the image.

The most noted experiments have been those of Hubel and
Wiesel [781-[811. Early experiments by Kuffler [ 82 ] demon-
strated the existence of concentric regions within the retinal mosaic
which have on and off centers. These two types of structures pro-

duce a type of high-pass spatial filtering through lateral inhibition.

Hubel and Wiesel found that at the cortical level there are '"simple"
cells which respond to spots of light on the retina anywhere within
a long narrow rectangular area which is flanked by an inhibitory
surround. Both ""on' and '"off' cells were found, including cells

which responded to light-dark borders. The cell responses were
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sharply selective to line orientation and to translational displace-
ments of the stimulus. In addition to simple cells, complex cells
were discovered. These cells appear to be located at the next
level of processing. In these cells an appropriately oriented slit
stimulus gives a response of about the same amplitude regardless
of its position in the field. Pollen, et. al., [ 83 ] have suggested,
based on their experimental work, that the complex structure of the
striate cortex may be performing two-dimensional spatial decom-
positions of subdomains of the visual space. In a more recent
publication Pollen and Taylor have shown that a Fourier decompo-
sition of the spatial domain is consistent with Hubel and Wiesel's
findings and they have pointed out several advantages of a system
which performs such a decomposition [ 84 ],

The spectral and spatial decompositions of the visual field are
by no means separable processes. Indeed, DeValois and Pease
have demonstrated that whereas significant spatial processing of
achromatic signals occurs at the retinal and LGB levels, comparable

chromatic processing appears to occur at the cortical levels [ 24 ],
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APPENDIX B
SOME PSYCHOPHYSICAL CHARACTERISTICS OF THE

HUMAN VISUAL SYSTEM

In Appendix A we discussed the physiological facets of the
visual system. One of the major problems of physiological studies
is that they usually involve invasive techniques. That is, one in-
serts electrodes into an area of interest or exposes neuronal struc-
ture in vivo, etc. This type of research is not commonly performed
on humans. Several animal species, from the Limulus (the horse-
shoe crab) to different varieties of monkey, have been used for
these purposes. Although similarities in the basic structure of the
HVS and certain animal visual systems certainly exist (particularly
for higher primates), it is difficult to ascertain the detailed struc-
ture and interconnectivity of the HVS., Moreover, knowledge of the
microstructure of a system (biological or otherwise) does not insure
knowledge of function. In this regards, the sum of the parts is
quite often exceeded by the whole. These problems are partially
resolved by psychophysical techniques.

Boynton has defined visual psychophysics as, ''an interdisci-
plinary area of scientific investigation relating the reactions of

human observers to physically measurable aspects of the visual
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environment in which they live' [85, p.8]. The key word is reac-

tions and the basic thrust becomes that of studying the whole via
input-output relationships. The mechanisms and/or organization
which could produce these relationships may then be hypothesized.

In this manner the two fields of study -- physiology and psycho-

physics -- complement one another.

B.1l. A Fundamental Result

A recent paper by Campbell and Green readily demonstrates
the ""harmony' between visual psychophysics and physiology [ 86 ].
In this work a laser was used to image interference fringes onto
the retina. By decreasing the contrast of the fringes with another
source of light it was possible to determine the threshold of detec-
tion. This technique produces a measure of the resolving power of
the retina-brain complex without prior modification by the optics of
the eye. Measurements were then made of the visual resolution of
""external'' gratings (viewed from the face of an oscilloscope) whose
intensity varied sinusoidally with distance across the gratings and
which were imaged onto the retina by the optics of the eye. A
comparison of the results yielded the modulation transfer function
of the eye. Effects of pupil size and focus were measured and

compared to the performance of an ideal optical system. The main

results were; the retina-brain complex has a high frequency cutoff
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and at every spatial frequency tested (2 to 40 cycles/degree) the

optics decreased contrast sensitivity, The characteristics obtained

for the optics was not in complete agreement with that obtained by

Flamant in earlier work which did not use a psychophysical para-

digm [ 87 ]. Flamant used a ''double pass' technique in which a i

grating was focused on the retina and the reflected image analyzed.

This technique does not require a response from the subject, how-

ever the grating passes through the optics twice and the reflective

properties of the retina must be taken into account. Campbell and

Gubisch then demonstrated that when the reflective properties of the

retina are taken into account the two experimental techniques yield

consistent results [68 ] The modulation transfer functions of the

eye for pupil diameters of 3mm and émm are shown in Figure B.l. i
In the previous paragraph we discussed some psychophysical

aspects of the dioptrics of the HVS, The main point is the dioptric

system has been parameterized well enough that one can control, to

an experimental degree of accuracy, the stimulus imaged upon the {

retina by a particular experimental apparatus. This is a prime

precursor of a valid psychophysical experimental protocol. With ;

this capability it is possible to study the retina-brain complex in
detail. There are three main areas of interest in these studies
(not necessarily independent); the spatial characteristics, the spec-

tral characteristics, and the temporal characteristics, We will
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begin with a discussion of the spatial characteristics.

B.2. Visual Acuity

One of the more important and misunderstood spatial charac-
teristics of the HVS is visual acuity. Visual acuity is simply the
capacity to discriminate the fine details of objects in the field of
view, There are two reasons a trait so simply defined is mis-
understood; firstly, there are several 'types'" of acuity tasks and
secondly, for most tasks there is no single mechanism responsible
for the response to the task. Acuity tasks may be grouped into the
four classes; detection, recognition, resolution, and localization
[ 65, p. 322}

The detection task merely involves stating whether an object
is present in the visual field or not. This task has been used by
gsome as a measure of the smallest objects which can be viewed by
che HVS. This is misleading since the results of such paradigms
cannot logically be separated from the absolute or differential sen-
sitivity of the eye,

The task of recognition requires the subject to locate, des-
cribe, or name the object. The standard eye chart is an example
of such a task. A common clinical object is the Landolt ring (a
ring with a gap). The observer is asked to indicate the location of
the gap. With high luminance backgrounds, gaps corresponding to

189




30 seconds of arc can be recognized. Intensity discrimination is
not the limiting factor in Landolt ring acuity. Other factors, parti-
cularly foveal cone diameter and spacing, are important mechanisms
affecting this type of test.

Resolution tasks require the observer to respond to a separa-
tion between elements of a pattern. The basic measurement be-
comes the minimum distance (between objects) which can be dis-
criminated. Visual acuity is the reciprocal of the angular separa-
tion between two elements of the test pattern when the two elements
are barely resolved. A favored pattern for this type of test is a
grating of parallel light and dark stripes of equal widths. This
type of object yields limits of one minute of arc. The resolution
task is regarded as the most critical aspect of visual acuity. The
results of such tests can be meaningfully related to the diffraction
effects of the dioptrics and to the retinal mosaic.

The last type of acuity task, localization, depends on the
discrimination of small displacements. An example of such a task
is vernier acuity which is tested by using a broken, offset, straight
line. The object becomes that of finding the minimum discernible
lateral displacement of the two halves of the line. This type of
task produces results which are similar to the detection of single
black lines (2 to 4 seconds).

There are several factors which affect visual acuity. The
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main ones are: (1) pupil size, (2) the dimensions of the retinal
mosaic, (3) object intensity, (4) stimulus duration, (5) adaptive
state of the photoreceptors, (6) eye movements, and (7) object con-
trast. The various tasks enumerated in previous paragraphs are
affected differently by these factors. The effects of pupil size were
discussed in Section A.1l. In Section A.2 the limits imposed by the
retinal mosaic were detailed. It was shown that these two factors
limit visual acuity to approximately 30 seconds of arc,

Through personal observation, one can easily ascertain that
while large objects are seen easily in dim light, small objects can
be seen clearly only when the lighting is increased. This effect is
primarily a function of scotopic versus photopic vision. Visual
acuity is poorest at scotopic intensity levels where parafoveal or
peripheral rod receptors predominate. For higher intensities
(which exceed cone receptor thresholds) acuity rises steeply. As
can be seen in Figure B.2, as intensity increases acuity rises to
a maximum level which is maintained over a wide range of high
intensities, As with other factors governing acuity, different data
and interpretations are found for the different forms of acuity tasks,
however, the basic relationship shown in Figure B.2 is maintained.

The effects of exposure time or stimulus duration have been
studied by several researchers. These studies indicate that for the

case of detection of bright disks on dark backgrounds, acuity is
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proportional to the square root of exposure time. For bright line
stimuli the proportionality is direct. No simple relationships
appear for acuity versus time in the resolution tasks.

The state of adaptation of the photoreceptors is an important
parameter in acuity tasks, particularly for the studies in stimulus
duration. Craik found that in general, acuity is highest for condi-
tions of near equal adapting and test luminances [ 89 ). Prolonged
dark adaptation is required to achieve scotopic vision, which is
necessary for viewing objects at low intensity levels. Acuity is

poor at these levels, but it is even poorer if adaptation is not com-

plete. At high intensity levels the eye must be given prolonged )

adaptation to insure the cones are functioning most efficiently.
The eyes are never motionless, thus the retinal image must

affect different receptors from one moment to the next. These }

motions could have three possible effects on visual acuity: (1) they

may be so small acuity effects are precluded, (2) they may cause

a "blurring' of the image, or (3) they may sharpen the image by

'"'scanning'' contours. Experimental evidence indicates that eye

movement does not improve acuity and in some cases acuity is im-

paired by motion [ 88 , p. 178]. One of the more important charac-

teristics of the HVS was discovered during these types of investiga-

tions. If the motion of the eye is completely counteracted, i.e.,

the image is stabilized on the retina, then the object fades out and
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the field looks uniformly gray [17 , p. 405]. If the object is shifted
or the intensity changed, it will reappear temporarily. A stabilized
image which is illuminated once or twice a second remains visible

[ 90, p. 382]. It can be concluded that receptors which are con-
tinuously excited by the same stimulus cease to transmit information.
If the receptors are excited intermittently, as during eye movement,
then information is continuously transmitted. It appears then that
eye motion is important for the maintenance of visibility but has
little effect on actual resolution of objects if they are visible.

It has been found that for dark objects on bright backgrounds
acuity is maximal for highest contrast between object and back-
gound [ 65, p. 339]. Recent work with contrast gratings has pro-
duced a wealth of information and corresponding ''theories'' of

vision. This area is discussed in detail in the following section.

B.3., Spatial Frequency Response Functions

So far, we have emphasized the standard techniques of visual
acuity determination. In general, the spatial manipulation required
to produce a criterion response confounds changes in the contrast
and space parameters. For example, when two points are brought
together the two light distribution peaks become closer and the ab-
solute luminance of the trough increases. The latter effect reduces

the contrast of the image. This situation is even more pronounced

193




when gratings of higher and higher spatial frequencies are consid-
ered. The contrast gets smaller and smaller, eventually becoming
zero. One experiment which dissociates contrast and spatial sepa- |
ration is the interference fringe method of bypassing the dioptrics
and creating a 100% contrast fringe on the retina. Another approach }

is to maintain a constant spatial pattern and vary only the contrast.

I These particular techniques are similar to the one dimensional fre-

2

F quency analyses performed on linear electrical networks. The
system is subjected to a constant amplitude input sinusoid and the
output amplitude and phase variations with frequency are determined.
For linear systems (or systems operating in a linear range) this
technique provides a complete characterization. In the space do-

main, where the input is periodically varying with distance, the

system must be spatially invariant as well as linear. These two
requirements cannot be over emphasized. The HVS does not satisfy
either, however, in certain experimental procedures these conditions
may be approached. In addition, the results of the experiments can
be enlgihtening if one is cognizant of the limitations of the analysis;
and, prediction of the system response to an arbitrary input is
possible. For these reasons spatial frequency analysis of the human
visual system has come into vogue recently [ 26 , p. 206].

The results of these experiments are usually conveyed in the

form of contrast sensitivity functions or curves. These functions
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characterize the ability of the visual system to transfer information
at various spatial frequencies from stimulus input to output. Spatial
frequency is usually expressed in cycles/degree. This convention
relates different combinations of viewing distance and object size to
the equivalent spatial frequency and hence, image size on the retina.
Contrast sensitivity is defined as the reciprocal of percent threshold
modulation (difference between peaks and troughs) required for the
observer to distinguish the stimulus from a uniform field of equiva-
lent luminance.

One of these experiments, that of Campbell and Green [ 86 ],
quantified the dioptrics and it was discussed earlier. The results
of this experiment indicate that as far as the high frequency charac-
teristics are concerned, the dioptrics and the retina-brain complex
yield curves which are of the same shape. The low-frequency
portion of typical contrast sensitivity curves can only be attributable
to the retina-brain complex however. The combined high- and low-
pass characteristics produce an overall bandpass characteristic with
a center frequency of approximately 5 cycles/degree (see Figure
B.3). The high-frequency loss has been shown to be non-isotropic
[ 91 ]. Gilbert and Fender have verified that the curves remain
essentially unchanged for stabilized images [ 92 ]. The low fre-
quency portion of the MTF has been found to be a function of

iuminance level [ 93 ]. The low-frequency attenuation also
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disappears with short exposure durations [94). As Westheimer has
pointed out, the high-frequency characteristics can be related to
optical and anatomical limitations; however, the origin of the low-

frequency traits is less clear [ 88, p. 182].

B.4. Lateral Inhibition

In Section A.4 we mentioned the experiments of Kuffler which
demonstrated the existence of regions in the retina which have '"on"
and "off'' centers. These types of regions can produce lateral in-
hibition which results in a low-frequency attenuation or high-pass
filtering. Patel has established this fact through Fourier calculations
[ibid]. The affects of adaptation and exposure duration on these
receptive regions have been shown to be consistent with the elimi-
nation of the low-frequency effects [ 88, pp. 182-183], The simple
thesis that the low-frequency loss is due to lateral inhibition is not
compatible with all observations however. For example, the results
of two increment-threshold experiments are shown in Figure B.4.
Note that in every case, as the diameter of the object increased the
threshold decreased. If lateral inhibition is occuring in the HVS the
threshold should begin to increase at some critical diameter, If the
modulation threshold curves of Figure B.3 derive their low-
frequency characteristic shape from lateral inhibition in the retina,

reconciliation with the curves of Figure B.4 is necessary,
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Several recent experimenters have questioned the validity of

the low-frequency roll-off evidenced in most HVS MTF's [ 95 |-

[ 97 ). The contention is that for the low-frequency gratings not
enough cycles are within the visual field. Estevez and Cavonius

[ 98 ] maintain that experiments of Hoekstra, McCann, and Savoy

[ 95 ]-[ 97 ] caused illusory luminance gradients across the stimu-
lus which resulted in a loss of sensitivity to mid-frequencies., They
contend this mid-frequency loss has been misinterpreted as an ab-
sence of low-frequency attenuation. This particular issue is still
unresolved; however, there are other experiments which indicate
the presence of spatial interaction in the HVS,

If there is no spatial interaction within the HVS, then the per-
ceived brightness at any point in the visual field would be a function
of the strength of excitation of the receptors lying under the retinal
image of that specific point (the following discussion is based heavily
upon Cornsweet's excellent presentation [ 17 , Ch. XI, pp. 268-310]).
Several perceptual or psychophysical paradigms indicate this is not
the case. A good example of this fact is demonstrated in Figure
B.5. When the constant intensity step grey scale is viewed, a
""scalloped'' intensity pattern is perceived. Another common demon-
stration is the Mach band pattern shown in Figure B.6. In this
case a dark and a light stripe appezr to the left and right, respec-

tively, of the center of the intensity gradient, These illustrations
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indicate that perceived intensity is not a simple monotonic

function of intensity stimulus. If one postulates the presence of
lateral inhibition within the HVS and plots the outputs of a row of
receptors being stimulated by a profile similar to that in Figure
B.5b, an output similar to B.5c is obtained [ 17, pp. 303-304].
Thus, the hypothesis that lateral inhibition occurs within the HVS
is consistent with these perceptual phenomena.

Although the previous paragraph indicates the presence of lateral
inhibitory effects within the HVS, and hence high-pass filters, the ex-
periments discussed do not quantify the filter parameters, The data
from the sine-wave grating experiments could provide this parameteri-
zation if we assume the low-frequency portions of curves such as those
shown in Figure B. 3 are valid. A very significant work in this respect
was performed by Mannos and Sakrison [ 7 }. This work was pri-
marily concerned with the efficient coding of images (as we are).
Several subjective evaluation experiments were performed with images
which were preprocessed, coded, and postprocessed with a model of the
HVS which contained a bandpass filter. The filter parameters were
varied for each set of experiments. The filter function which gave the
best images (as judged subjectively) was very close to MTF curves
obtained by various researchers via grating experiments [ 7,

Figure 8, p. 535]. The primary difference being the peak frequency

occured at 8 cycles per degree rather than the usual 5 to 6 cycles per
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degree as obtained psychophysically., Thus, the low-frequency loss
has been shown to be important perceptually,

The preceding discussions of the spatial characteristics of the
HVS has shown them to be complex and not easily quantifiable, The
lack of heterogeneity within the retinal structure cannot be overem-
phasized. This characteristic makes it extremely difficult to sepa-
rate global and local characteristics of the system. Indeed, one of
the main objections to grating paradigms is that they are global in
nature. Many of the properties and traits we have discussed be-
come relevant when modeling the HVS to perform perceptual, pattern
recognition, or scene analysis tasks. For our purposes (system
preprocessors) the global characteristics are the more pertinent

characteristics.

B.5. Spectral Properties

Let us turn now to a second major area, the spectral charac-
teristics of the HVS. The absorption spectra of the human visual
photopigments were shown in Figure A.5. These curves were ob-
tained through measurements on receptors in excised human retinas,
The measurement technique used is very dependent on the adaptive
state of the receptors. Obviously, human retinas are obtained under
almost completely uncontrolled conditions and therefore the data is

not totally reliable. Liebman has concluded that the data can be no

202




e

better than +20-30nm and that published density curves cannot be
regarded as indicative of what exists in the living eye [ 99 , p. 515].
To gain some true insight into the HVS spectral response we must
once again turn to psychophysical experiments. First we will define
some basic terms.

Colors have three main attributes; hue, saturation, and lumino-
sity or brightness. Hue denotes the color appearance by name,
e.g., red, orange, etc. It is the aspect of color which changes
most strongly when the wavelength of the stimulus changes. Satu-
ration refers to the purity of a hue or to which extent it appears to
be diluted with white, grey, or black. The degree to which colors

appear to emit more or less light is referred to as the luminosity

or brightness of the color. The term luminosity is preferable since
brightness of color means ''colorfulness'' to many people. The
three attributes just defined can be used to describe any color.
It should be noted that these are all subjective terms, In this sense
color and wavelength of light are not synonymous. Indeed, several

different combinations of wavelength may produce the same subjective

color description. The visible band of electromagnetic radiation
wavelengths extends from the short ultra violet rays below 397am
to the longer infrared heat waves above 723nm. The principle hues
are: red, 647-723nm; orange, 585-647nm; yellow, 570-585nm; green,

521nm; blue, 480nm; indigo, 424-455nm; and violet, 397-424nm.
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From Figure A.5 it can be seen that the three photoreceptor
curves overlap. For example, a wavelength of 480nm would stimu-
late all three receptors. The difficulty that this situation generates
in trying to design a reliable psychophysical paradigm is illustrated
in Figure B.7. The curves of this figure are the result of a color
naming experiment. The various wavelengths were presented to the
subjects who responded with one of four hues; red, yellow, green,
or blue. It can be seen that in the case of 580nm a variation of
only +40nm can shift the perceived response from green to blue to
red. One way to eliminate some of the difficulties encountered in
trying to measure responses of this trichromatic system is to select
subjects with color vision difficiencies,

Some observers can only discriminate between wavelengths in
restricted regions of the spectrum, and color-matching functions
from them show that only two parameters are needed to describe
their color vision. The simplest reason for this deficiency would
be an absence of one of the three types of cones and this has been
verified by using reflection densitometry., These dichromats are of
three types: protanopes, who lack the 565nm cone; deuteranopes,
who lack the 535nm cone; and the more rare tritanopes, who do not
have the short-wavelength cones. It is known that blue light-absorbing
cones are relatively sparse in the foveola [ 100 , p. 209]). Thus,

blue lights imaged precisely in this area are confused with greens,
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white, and yellows. This deficiency is compounded by the absorp-
tion of the shorter wavelengths in the ocular media caused by the
coloration of the cornea and the pigmentation contained in the ma-
cula. Because of these blue deficiencies in the foveola, microspec-
trophotometry techniques can be used to obtain essentially single
photoreceptor curves from deuteranopes and protanopes. Rushton
obtained curves which essentially matched those of the green-absor-
bing and red-absorbing curves in Figure A.5 [ 101 ], Rushton also
went one step further and obtained similar curves from a normal
observer by bleaching the red-absorbing cones with red light to ob-
tain the green-absorbing curve and bleaching with blue-green light
to obtain the red-absorbing curve. Figure B.8 contains three
curves obtained by Wald which have been widely accepted as the
absorption spectra of the three pigments [ 102 ]. These curves in-
clude the effects of the ocular media. When the difference in
scaling is considered the curves of Figures A.5 and B.8 are quite
similar., Thus, the trichromatic receptor theory is supported by

both physiological and psychophysical data.

B.6. Trichromatic and Opponent Color Theories

The trichromatic theory of color vision was first postulated
by an English chemist named Palmer in 1777 [ 103 , p. 56].

Twenty-five years later Young proposed the same theory of color
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vision, Helmholtz brought Young's theory of ''color sensations'

forward in his Physiological Optics published in 1860. Because of

this, the trichromatic theory is often referred to as the Young-
Helmholtz theory of color vision. There is another theory for
color vision which was proposed by Hering in 1820 [ 104 , p, 73],
the so-called opponent theory of color vision. Hering was im-
pressed by the existence of the five psychological sensations; red,
yellow, green, blue, and white (recall the four hue curves of Figure
B.7). In addition, the four basic hues .eemed to operate in oppo-
sing pairs. Red and green seem to oppose in that there is no
reddish-green color. Similarly, there are no yellowish-blues,
Hering also assumed there must be a third black-white mechanism.
This theory explained the existence of the five basic psychological
primaries and the complementarity of negative after-images. For
example, the after-image of a bright red stimulus seen against a
white surface is green.

The two basic theories of vision, trichromatic and opponent,
have generated much debate in the past 100 years. It now appears
that both theories are correct. The experimental work of DeValois
[ 76 ] has confirmed the existence of oppcnent cells in the LGB.
Recent conjectures on the interconnectivity of the receptors and
LGB cells demonstrate the compatibility of the two theories [ 90,

p. 189], [ 104, p. 76], and [ 105 ].
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B.7. Luminosity and Color Constancy

So far, we have considered only the spectral aspects of per-
ceived colors. The effects of luminance and contrast should also
be considered when dealing with color vision. As the luminance of
a colored stimulus is increased the apparent hue may undergo a
change. Increasing luminance will shift reds and yellow-greens
toward the yellows while blue-greens become bluer. This is the
Bezold-Brucke effect, and it can be explained by using the opponent
color theory. The red-green system simply has a lower threshold
than the blue-yellow system. The appearance of a color is also
altered by contrast phenomena,

If a constant luminance colored patch is viewed against a
variable luminance white background, its appearance may change
dramatically with changes in the background luminance. For exam-
ple, an orange object will become brown with a high luminance
background or a pastel orange with a low luminance surround. It
is believed that lateral inhibition produces this effect and other
similar effects [17 , pp. 365-383]. If this is indeed the case, then
Mach bands should occur in gradients of hue. Several researchers
have investigated this phenomena and there is considerable disagree-
ment as to whether ''colored'' Mach bands do indeed occur. Van

Der Horst and Bouman maintain that they do not and hence, spatial

inhibitory influences are lacking in the color mediating channels
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[ 106 ). On the other hand a recent paper by Green and Fast de-
monstrates that Mach bands similar to those which occur in achro-
matic luminance gradients also occur in constant hue luminance
gradients [ 107], However, the '"Mach type'' bands observed in hue
gradients were not the type as predicted by lateral inhibition at the
receptor level. =

Spatial frequency contrast gratings of different hues have also
been used in studying color Yision [ 108 ], Results of these studies
verify the reduced sensitivity of the blue receptors (including the
ocular media) and their scarcity.' This later factor is evidenced by
the reduction in resolution. The blue channel was found to peak at
approximately 2 cycles/degree rather than 8 cycles/degree for red
and green, In addition, the méxin.uum frequency was between 10
and 20 cycles/degree, which represents an acuity decrease by a
factor of 6. Of perhaps more importance is the fact that Green
obtained low-freque‘ncy losses in all of his data, therefore implying
that lateral inhibition is present. It becomes apparent that several
spatial and spectral aspects of the HVS are inter-related and it may
be some time before the true structure and nature of the system is
known. To compound the problem these factors are also related
to the temporal characteristics of the HVS.
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B.8. Some Temporal Considerations

Since we are primarily concerned with ''still' imagery , we will
not discuss in detail the temporal aspects of the visual system.
One of the most studied temporal characteristics is the response to
flickering stimuli. At a given light intensity, a field is alternated
between light and dark with increasing frequency until the flicker is
no longer detected. That point is defined as the critical flicker
frequency (CFF) for the particular stimulus conditions. One can
obtain MTF's of the temporal system by varying the intensity of a
field sinusoidally, The temporal MTF has been measured for a
wide variety of stimulus and adaptation conditions [ 109 ].[ 112 |,
At any mean level of luminance the system is maximally sensitive
to frequencies between 5 and 25Hz (flicker free T.V. is scanned at
30Hz). Increased luminance shifts the high- and mid-frequency
response to higher frequencies. The low-frequency portion of the
curves is relatively insensitive to mean intensity changes and again,
lateral inhibition may be their determinant [ 17, pp. 410-416].
Some spatio-temporal and spectral-temporal effects are of more
interest,

Tynon and Sekuler have found that sinusoidal gratings appear
to be of higher spatial frequency when briefly flashed rather than
presented for longer durations [ 113 ]. Other studies have shown

that the contrast level for perceived flicker and that for which
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the spatial structure of gratings becomes apparent occurs at two
different thresholds [114]4 These results have led some to posit that
two temporal channels, one sustained and one transient in nature,
exist in the HVS [ 114 ] and [ 15 ]. This proposition has been
verified for the interconnections between the cat's retina and LGB
[ 116 ]. The implications of these results are not clear at this time.

One of the more startling temporal phenomena is that of in-
duced color, Colors may be perceived when a variety of stimulus
patterns are illuminated intermittently with white light [ 90 , pp.
205-210], [ 104 , p. 152), and [ 117 , pp. 307-308]. These colors
are commonly referred to as Fechner colors and they are usually
demonstrated with a Benham's disc or top. The disc is rotated
at about 5 to 10 rps and three colored rings of blue, green, and
red appear. Such a disc is shown in Figure B.9. When rotated
clockwise the lines denoted A appear blueish and those at C are
reddish, A counterclockwise rotation interchanges the two colors.
It has been suggested that the complex flickering patterns set up
by the rotating disc produce time-varying activity in the optic nerve
that is similar to the output of the photoreceptors when stimulated
by colored lights [ 90, p. 207]. Several attempts have been made
to produce subjective colors with stationary flickering lights.
These experiments have been moderately successful.

Young has proposed the color channels of the HVS are sensi-
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Figure B.9 Benham's Disc

212




=

tive to stimulus temporal phase information [ 18 ). . He has tested
this hypothesis by stimulating the eye with electrical impulses which
Were compatible with Benham's disc signals convolved with the
temporal impulse response of the HVS, The results indicate the
relative phase relationships of temporal signals is the most im-
portant stimulus variable, The question of the exact physiological
nature of the hypothesized phase signals, or the manner in which
they are encoded and deéoded to produce color sensations, remains

unanswered however,
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